【題目】問(wèn)題:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

探究:要研究上面的問(wèn)題,我們不妨先從最簡(jiǎn)單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長(zhǎng)為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖①,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下看:

邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形一共有1個(gè).

探究二:將邊長(zhǎng)為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖②,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長(zhǎng)為2的正三角形共有個(gè).

探究三:將邊長(zhǎng)為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫(xiě)出探究過(guò)程)

結(jié)論:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫(xiě)出探究過(guò)程)

應(yīng)用:將一個(gè)邊長(zhǎng)為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形有______個(gè)和邊長(zhǎng)為2的正三角形有______個(gè).

【答案】探究三:16,6;結(jié)論:n, ;應(yīng)用:625,300.

【解析】

探究三:模仿探究一、二即可解決問(wèn)題;

結(jié)論:由探究一、二、三可得:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),邊長(zhǎng)為1的正三角形共有個(gè);邊長(zhǎng)為2的正三角形共有 個(gè);

應(yīng)用:根據(jù)結(jié)論即可解決問(wèn)題.

解:探究三:

如圖3,連接邊長(zhǎng)為4的正三角形三條邊的對(duì)應(yīng)四等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),第四層有7個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形有個(gè).

結(jié)論:

連接邊長(zhǎng)為的正三角形三條邊的對(duì)應(yīng)等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),第四層有7個(gè),……,第層有個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形,共有個(gè).

應(yīng)用:

邊長(zhǎng)為1的正三角形有=625(個(gè)),

邊長(zhǎng)為2的正三角形有 (個(gè)).

故答案為:探究三:16,6;結(jié)論:n, ;應(yīng)用:625,300.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線(xiàn)相交于點(diǎn)O,AC=AB, EAB邊的中點(diǎn),GF BC上的點(diǎn),連接OGEF,若AB=13, BC=10,GF=5,則圖中陰影部分的面積為( )

A.48B.36C.30D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),將三角形進(jìn)行平移,平移后點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn),點(diǎn),點(diǎn),點(diǎn),點(diǎn).

1)若,求的值;

2)若點(diǎn),其中. 直線(xiàn)軸于點(diǎn),且三角形的面積為1,試探究的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形的頂點(diǎn)軸上,點(diǎn)在點(diǎn)的左側(cè),點(diǎn)軸的正半軸上.點(diǎn)的坐標(biāo)為.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為.

(1)①點(diǎn)的坐標(biāo) .②求菱形的面積.

(2)當(dāng)時(shí),問(wèn)線(xiàn)段上是否存在點(diǎn),使得最小,如果存在,求出 最小值;如果不存在,請(qǐng)說(shuō)明理由.

(3)若點(diǎn)的距離是1,則點(diǎn)運(yùn)動(dòng)的時(shí)間等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線(xiàn)y與一次函數(shù)y=﹣x+4在第一象限內(nèi)交于A,B兩點(diǎn),且AOB的面積為2,則k的值為(

A.2B.C.D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABBD,CDBD,垂足分別為B、D,AD和BC相交于點(diǎn)E,EFBD,垂足為F,我們可以證明成立(不要求考生證明).

若將圖中的垂線(xiàn)改為斜交,如圖,ABCD,AD,BC相交于點(diǎn)E,過(guò)點(diǎn)E作EFAB交BD于點(diǎn)F,則:

1還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;

(2)請(qǐng)找出SABD,SBED和SBDC間的關(guān)系式,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,要說(shuō)明ABDACD,還需從下列條件中選一個(gè),錯(cuò)誤的選法是(

A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“格子乘法”是15世紀(jì)中葉,意大利數(shù)學(xué)家帕喬利在《算術(shù)幾何及比例性質(zhì)摘要》一書(shū)中介紹的一種兩個(gè)數(shù)的相乘的計(jì)算方法.這種方法傳入中國(guó)之后,在明朝數(shù)學(xué)家程大位的《算法統(tǒng)宗》書(shū)中被稱(chēng)為“鋪地錦”具體步驟如下:

①先畫(huà)一個(gè)矩形,把它分成p×q個(gè)方格(p,q分別為兩乘數(shù)的位數(shù))在方格上邊、右邊分別寫(xiě)下兩個(gè)因數(shù);

②再用對(duì)角線(xiàn)把方格一分為二,分別記錄上述各位數(shù)字相應(yīng)乘積的十位數(shù)與個(gè)位數(shù);

③然后這些乘積由右下到左上,沿對(duì)角線(xiàn)方向相加,相加滿(mǎn)十時(shí)向前進(jìn)一;

④最后得到結(jié)果(方格左側(cè)與下方數(shù)字依次排列).比如:

1)圖1是用“鋪地錦”計(jì)算x9×784的格子,則z   ,x9×784   

2)圖2是用“鋪地錦”計(jì)算ab×cd的格子,已知ab×cd2176,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)B、O分別落在點(diǎn)、處,點(diǎn)x軸上,再將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,依次進(jìn)行下去…若點(diǎn), ,則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

同步練習(xí)冊(cè)答案