【題目】計(jì)算題

1

2)(﹣17+23+(﹣53++36

3

4

5

6

7

8

【答案】1102-113-164 526-7-35.938-

【解析】

1)根據(jù)有理數(shù)的減法法則計(jì)算即可;
2)原式結(jié)合后,相加即可得到結(jié)果;
3)先算乘法和除法,再算加法;

4)、(5)利用乘法分配律計(jì)算即可得到結(jié)果;
6)原式利用乘法法則計(jì)算即可得到結(jié)果;

7)原式先計(jì)算乘除運(yùn)算,再計(jì)算加減運(yùn)算即可得到結(jié)果;
8)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

原式利用乘法法則計(jì)算即可得到結(jié)果;

:1=8+2=10;

2)(﹣17+23+(﹣53++36==-70+59=-11;

3=4-20=-16;

4=(-125-)×(-)=25+=;

5=12-18+8=2;

6==;

7=4-40+0.07=-35.93;

8=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司推出了移動(dòng)電話的兩種計(jì)費(fèi)方式(詳情見下表)。

月使用費(fèi)/

主叫限定時(shí)間/

主叫超時(shí)費(fèi)/(元/分)

被叫

方式一

58

150

0.25

免費(fèi)

方式二

88

350

0.19

免費(fèi)

設(shè)一個(gè)月內(nèi)使用移動(dòng)電話主叫的時(shí)間為分(為正整數(shù)),請(qǐng)根據(jù)表中提供的信息回答下列問題:

1)用含有的式子填寫下表:

≤150

150350

350

350

方式一計(jì)費(fèi)/

58

     

108

   

方式二計(jì)費(fèi)/

88

88

88

   

)當(dāng)為何值時(shí),兩種計(jì)費(fèi)方式的費(fèi)用相等?

)請(qǐng)根據(jù)()和()的計(jì)算及生活經(jīng)驗(yàn),直接寫出不同時(shí)間段,選用哪種計(jì)費(fèi)方式省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BF為O的直徑,直線AC交O于A,B兩點(diǎn),點(diǎn)D在O上,BD平分OBC,DEAC于點(diǎn)E.

(1)求證:直線DE是O的切線;

(2)若 BF=10,sinBDE=,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

1)求證:△OCP∽△PDA;

2)若△OCP與△PDA的面積比為14,①求邊CP的長(zhǎng);②求邊AB的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是菱形的對(duì)角線,分別是邊的中點(diǎn),連接,,則下列結(jié)論錯(cuò)誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線ykx+bk,b為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0),B03),拋物線y=﹣x2+4x+1y軸交于點(diǎn)C,點(diǎn)E在拋物線y=﹣x2+4x+1的對(duì)稱軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),CE+EF的最小值是( 。

A.2B.4C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.

(1)用一個(gè)矩形隨意框住4個(gè)數(shù),把其中最小的數(shù)記為,另三個(gè)數(shù)用含式子表示出來,當(dāng)被框住的4個(gè)數(shù)之和等于418時(shí),值是多少?

(2)被框住的4個(gè)數(shù)之和能否等于724?如果能,請(qǐng)求出此時(shí)x值;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線相交于點(diǎn),.

(1)已知,求的度數(shù);

(2)如果的平分線,那么的平分線嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,A=30°,在同一平面內(nèi),以對(duì)角線BD為底邊作頂角為120°的等腰三角形BDE,則EBC的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案