【題目】如圖,是菱形的對(duì)角線,分別是邊的中點(diǎn),連接,,則下列結(jié)論錯(cuò)誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
【答案】D
【解析】
根據(jù)菱形的性質(zhì)和三角形的中位線以及菱形的判定可得AC⊥BD且DO=BD,再根據(jù)三角形的中位線可得EF=BD,即可得出結(jié)論
∵是菱形的對(duì)角線,
∴AC⊥BD且DO=BD,
∵分別是邊的中點(diǎn),
∴EF=BD,EF//BD,
∴EF=DO, ∴選項(xiàng)A正確.
∵AC⊥BD,EF//BD
∴,∴選項(xiàng)B正確.
∵是菱形的對(duì)角線,
∴BC=CD,O為AC的中點(diǎn)
∵分別是邊的中點(diǎn),
∴EO//BC//AD,FO//CD//AB且EO=FO=BC=DC
∴四邊形是菱形∴選項(xiàng)C正確.
∵EF//BD,FO//AB
∴.四邊形是平行四邊形
∴選項(xiàng)D錯(cuò)誤.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
閱讀材料:
數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問(wèn)題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對(duì)值表示;
在數(shù)軸上,有理數(shù)3與1對(duì)應(yīng)的兩點(diǎn)之間的距離為|3﹣1|=2;
在數(shù)軸上,有理數(shù)5與﹣2對(duì)應(yīng)的兩點(diǎn)之間的距離為|5﹣(﹣2)|=7;
在數(shù)軸上,有理數(shù)﹣2與3對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣2﹣3|=5;
在數(shù)軸上,有理數(shù)﹣8與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣8﹣(﹣5)|=3;……
如圖1,在數(shù)軸上有理數(shù)a對(duì)應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對(duì)應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|a﹣b|或|b﹣a|,記為|AB|=|a﹣b|=|b﹣a|.
解決問(wèn)題:
(1)數(shù)軸上有理數(shù)﹣10與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離等于 ;數(shù)軸上有理數(shù)x與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為 ;若數(shù)軸上有理數(shù)x與﹣1對(duì)應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于 ;
聯(lián)系拓廣:
(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為﹣2,動(dòng)點(diǎn)P表示的數(shù)為x.
請(qǐng)從A,B兩題中任選一題作答,我選擇 題.
A.①若點(diǎn)P在點(diǎn)M,N兩點(diǎn)之間,則|PM|+|PN|= ;
②若|PM|=2|PN|,即點(diǎn)P到點(diǎn)M的距離等于點(diǎn)P到點(diǎn)N的距離的2倍,則x等于 .
B.①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x﹣4|= ;
若|x+2|+|x﹣4|═10,則x= ;
②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小莉和哥哥玩撲克牌游戲,小莉有數(shù)字為1,2,3,5的四張牌,哥哥有數(shù)字為4,6,7,8的四張牌,按如下游戲規(guī)則進(jìn)行:小莉和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小莉勝;如果和為奇數(shù),則哥哥勝.
(1)請(qǐng)用數(shù)形圖或列表法分別求出小莉勝和哥哥勝的概率;
(2)這個(gè)游戲公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你設(shè)計(jì)一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)(1,0)和點(diǎn),與軸交于點(diǎn),對(duì)稱(chēng)軸為直線=1.
(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
(2)連接、,若△的面積為6,求此拋物線的解析式;
(3)在(2)的條件下,點(diǎn)為軸正半軸上的一點(diǎn),點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱(chēng),當(dāng)△為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個(gè)四分之一圓組成(半徑相同)
(1)用代數(shù)式表示窗戶能射進(jìn)陽(yáng)光的面積是 .(結(jié)果保留π)
(2)當(dāng),b=1時(shí),求窗戶能射進(jìn)陽(yáng)光的面積是多少?(取π≈3)
(3)小亮又設(shè)計(jì)了如圖2的窗簾(由一個(gè)半圓和兩個(gè)四分之一圓組成,半徑相同),請(qǐng)你幫他算一算此時(shí)窗戶能射進(jìn)陽(yáng)光的面積是否更大?如果更大,那么大多少?(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知12箱蘋(píng)果,以每箱10千克為標(biāo)準(zhǔn),超過(guò)10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),稱(chēng)重記錄如下:
+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。
⑴求12箱蘋(píng)果的總重量;
⑵若每箱蘋(píng)果的重量標(biāo)準(zhǔn)為100.5(千克),則這12箱有幾箱不合乎標(biāo)準(zhǔn)的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com