【題目】某市積極開展“陽(yáng)光體育進(jìn)校園”活動(dòng),各校學(xué)生堅(jiān)持每天鍛煉一小時(shí).某校根據(jù)本校的實(shí)際情況,決定開設(shè) A:乒乓球,B:籃球,C:跑步,D:跳繩四種運(yùn)動(dòng)項(xiàng)目.規(guī)定每個(gè)學(xué)生必須參加一項(xiàng)活動(dòng).學(xué)校為了了解學(xué)生最喜歡哪一種項(xiàng)目,擬采用以下的方式進(jìn)行調(diào)查.
方式一:調(diào)查該校七年級(jí)女生喜歡的運(yùn)動(dòng)項(xiàng)目
方式二:調(diào)查該校每個(gè)班級(jí)學(xué)號(hào)為 5 的倍數(shù)的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
方式三:調(diào)查該校書法小組的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
方式四:調(diào)查該校田徑隊(duì)的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
(1)上面的調(diào)查方式合適的是 ;
學(xué)校體育組采用了(1)中的方式,將調(diào)查的結(jié)果繪制成右側(cè)兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中的信息解答下列問題:
(2)在扇形統(tǒng)計(jì)圖中,B 項(xiàng)目對(duì)應(yīng)的圓心角的度數(shù)為 ;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)已知該校有 3600 名學(xué)生,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)全校學(xué)生最喜歡乒乓球的人數(shù).
【答案】(1)方式二;(2)72°;(3)見解析;(4)1584人.
【解析】試題分析: 上面的調(diào)查方式合適的是方式二.其它的沒有代表性.
(2)利用1減去其它各組所占的比例即可求得喜歡B項(xiàng)目的人數(shù)百分比,利用百分比乘以360度即可求得扇形的圓心角的度數(shù);
(3)根據(jù)喜歡A的有44人,占44%即可求得調(diào)查的總?cè)藬?shù),乘以對(duì)應(yīng)的百分比即可求得喜歡B的人數(shù),作出統(tǒng)計(jì)圖;
(4)總?cè)藬?shù)3600乘以喜歡乒乓球的人數(shù)所占的百分比即可求解.
試題解析: 上面的調(diào)查方式合適的是方式二.其它的沒有代表性.
故答案為:方式二.
(1)144%8%28%=20%,所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是:
故答案為:
(2)調(diào)查的總?cè)藬?shù)是:44÷44%=100(人),
則喜歡B的人數(shù)是:100×20%=20(人),
補(bǔ)全統(tǒng)計(jì)圖如圖所示:
(3)全校喜歡乒乓球的人數(shù)是 (人).
答:根據(jù)樣本估計(jì)全校喜歡乒乓球的人數(shù)是人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進(jìn)我市校園體育運(yùn)動(dòng)的發(fā)展,2017年義烏市中小學(xué)運(yùn)動(dòng)會(huì)在雪峰中學(xué)成功舉辦.在此期間,某體育文化用品商店計(jì)劃一次性購(gòu)進(jìn)籃球和排球共60個(gè),其進(jìn)價(jià)與售價(jià)間的關(guān)系如下表:
籃球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 105 | 70 |
(1)商店用4200元購(gòu)進(jìn)這批籃球和排球,求購(gòu)進(jìn)籃球和排球各多少個(gè)?
(2)設(shè)商店所獲利潤(rùn)為y(單位:元),購(gòu)進(jìn)籃球的個(gè)數(shù)為x(單位:個(gè)),請(qǐng)寫出y與x之間的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)若要使商店的進(jìn)貨成本在4300元的限額內(nèi),且全部銷售完后所獲利潤(rùn)不低于1400元,請(qǐng)你列舉出商店所有進(jìn)貨方案,并求出最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥x軸于點(diǎn)A,點(diǎn)B在y軸的正半軸上,∠ABC=60°,AB=4,BC=,點(diǎn)D為AC與反比例函數(shù)的圖象的交點(diǎn).若直線BD將△ABC的面積分成1:2的兩部分,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時(shí),兩車相遇;②乙車出發(fā)1.5h時(shí),兩車相距170km;③乙車出發(fā)h時(shí),兩車相遇;④甲車到達(dá)C地時(shí),兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子的側(cè)面為長(zhǎng)方形,底面為等邊三角形.
(1)每個(gè)盒子需______個(gè)長(zhǎng)方形,______個(gè)等邊三角形;
(2)硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).
現(xiàn)有相同規(guī)格的 19 張正方形硬紙板,其中的 x 張按方法一裁剪,剩余的按方法二裁剪.
①用含 x 的代數(shù)式分別表示裁剪出的側(cè)面?zhèn)數(shù),底面?zhèn)數(shù);
②若裁剪出的側(cè)面和底面恰好全部用完,求能做多少個(gè)盒子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:如圖1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分線,交CB邊的延長(zhǎng)線于點(diǎn)D.
求證:BD=AB+AC.
(2)對(duì)于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分線,交CB邊的延長(zhǎng)線于點(diǎn)D,如圖2,請(qǐng)你寫出線段AC、AB、BD之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
(1)請(qǐng)以y軸為對(duì)稱軸,畫出與△ABC對(duì)稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點(diǎn)P(a+1,b-1)與點(diǎn)C關(guān)于x軸對(duì)稱,則a= ,b= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com