【題目】如圖,AB是⊙O的弦,過(guò)B作BC⊥AB交⊙O于C,過(guò)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)D,E為AD的中點(diǎn),過(guò)E作EF//BC交DC的延長(zhǎng)線于點(diǎn)F,連接AF并延長(zhǎng)BC的延長(zhǎng)線于點(diǎn)G
(1)求證:FC=FG;
(2)若BC=4,CG=6,求AB的長(zhǎng).
【答案】
(1)證明:∵EF//BC,BC⊥AB,
∴EF⊥AB,
∵E為AD中點(diǎn),
∴AF=DF,
∴∠A=∠D,
∵BC⊥AD,
∴∠ABC=∠CBD=90°,
∴∠A+∠G=∠D+∠DCB=90°,
∵∠FCG=∠BCD,
∴∠G=∠FCG,
∴FC=FG;
(2)解:連接AC,
∵∠ABC=90°,
∴∠ACB+∠CAB=90°,
∵DF為切線,
∴∠ACD=90°,
∴∠ACB+∠DCB=90°,
∴∠CAB=∠BCD,
∵∠G=∠FCG=∠BCD,
∴∠CAB=∠G,
∵∠ABC=∠ABG,
∴△ABC∽△GBA,
∴ = ,
∴AB2=BCGB=4×(4+6)=40,
∴AB= =2
【解析】(1)求出EF⊥AB,根據(jù)線段垂直平分線性質(zhì)得出AF=DF,求出∠A=∠D,根據(jù)三角形內(nèi)角和定理求出∠G=∠FCG,即可得出答案;(2)連接AC,求出∠G=∠CAD,根據(jù)相似三角形的判定得出△ABC∽△GBA,得出比例式,打擾求出即可.
【考點(diǎn)精析】利用勾股定理的概念和切線的性質(zhì)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個(gè)數(shù)a、b、c,并求出了它們的和為39,這三個(gè)數(shù)在月歷中的排布不可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】)如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運(yùn)動(dòng),M,N第一次相遇時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)△AMN的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點(diǎn)E.在△ABC外取一點(diǎn)F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點(diǎn)M,使BM=2DE,連接ME.試判斷ME與BC是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC的邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則y與x函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠ABC=∠ACB,D為線段CB上一點(diǎn)(不與C、B重合),點(diǎn)E為射線CA上一點(diǎn),∠ADE=∠AED.設(shè)∠BAD=α,∠CDE=β.
(1)如圖(1),
①若∠BAC=42°,∠DAE=30°,則α= ,β= .
②若∠BAC=54°,∠DAE=36°,則α= ,β= .
③寫(xiě)出α與β的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖(2),當(dāng)E點(diǎn)在CA的延長(zhǎng)線上時(shí),其它條件不變,請(qǐng)直接寫(xiě)出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,圓P經(jīng)過(guò)點(diǎn)A(﹣4,0),點(diǎn)B(6,0),交y軸于點(diǎn)C,∠ACB=45°,連結(jié)AP、BP.
(1)求圓P的半徑;
(2)求OC長(zhǎng);
(3)在圓P上是否存在點(diǎn)D,使△BCD的面積等于△ABC的面積?若存在求出點(diǎn)D坐標(biāo);若不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com