如圖,一張直角三角形的紙片ABC,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且AC與AE重合,求CD的長.
考點:
翻折變換(折疊問題)..
專題:
方程思想.
分析:
先根據(jù)勾股定理求出AB的長,設(shè)CD=xcm,則BD=(8﹣x)cm,再由圖形翻折變換的性質(zhì)可知AE=AC=6cm,DE=CD=xcm,進而可得出BE的長,在Rt△BDE中利用勾股定理即可求出x的值,進而得出CD的長.
解答:
解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB===10cm,
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,
設(shè)DE=CD=xcm,∠AED=90°,
∴BE=AB﹣AE=10﹣6=4cm,
在Rt△BDE中,BD2=DE2+BE2,
即(8﹣x)2=42+x2,
解得x=3.
故CD的長為3cm.
點評:
本題考查的是翻折變換及勾股定理,解答此類題目時常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其它線段的長度,選擇適當?shù)闹苯侨切,運用勾股定理列出方程求出答案.
科目:初中數(shù)學 來源: 題型:
A、4cm | B、5cm | C、6cm | D、10cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com