【題目】如圖,二次函數(shù) 的圖像交 軸于 ,交 軸于點(diǎn) ,連接直線 .

(1)求二次函數(shù)的解析式;
(2)點(diǎn) 在二次函數(shù)的圖像上,圓 與直線 相切,切點(diǎn)為 .
①若 軸的左側(cè),且△ ∽△ ,求點(diǎn) 的坐標(biāo);
②若圓 的半徑為4,求點(diǎn) 的坐標(biāo).

【答案】
(1)解:∵將x=1,y=0,x=-2,y=0代入y=ax2+bx-2得 ,解得:

∴拋物線的解析式為y=x2+x-2


(2)解:解①∵圓P與直線AC相切,∴PH⊥AC.

(i)如圖1,當(dāng)H在點(diǎn)C下方時(shí),

①∵△CHP∽△AOC,

∴∠PCH=∠CAO.

∴CP∥x軸.

∴yP=-2.

∴x2+x-2=-2.解得x1=0(舍去),x2=-1,

∴P(-1,-2).

(ii)如圖1,當(dāng)H′在點(diǎn)C上方時(shí).

∵∠P′CH′=∠CAO,

∴QA=QC,設(shè)OQ=m,則QC=QA=m+1,

在Rt△QOC中,由勾股定理,得m2+22=(m+1)2

解得,m= ,即OQ=

設(shè)直線C P′的解析式為y=kx-2,把Q(- ,0)的坐標(biāo)代入,得 k-2=0,解得k=- ,

∴y=- x-2,由- x-2=x2+x-2,解得x1=0(舍去),x2= ,此時(shí)y=- ×(- )-2= ,

∴P′(- ).

∴點(diǎn)P的坐標(biāo)為(-1,-2)或(- , )②在x軸上取一點(diǎn)D,

如圖(2),過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,使DE=4.

在Rt△AOC中,AC= ,

∵∠COA=∠DEA=90°,∠OAC=∠EAD,

∴△AED∽△AOC.

,即 ,解得AD=2

∴D(1-2 ,0)或D(1+2 ,0).過(guò)點(diǎn)D作DP∥AC,交拋物線于P,設(shè)直線AC的解析式為y=kx+b.將點(diǎn)A、C的坐標(biāo)代入拋物線的解析式得到:

解得:

∴直線AC的解析式為y=2x-2.

∴直線PD的解析式為y=2x+4 -2或y=2x-4 -2,當(dāng)2x+4 -2=x2+x-2時(shí),即x2-x-4 =0,解得x1= ,x2= ;

當(dāng)2x-4 -2=x2+x-2時(shí),即x2-x+4 =0,方程無(wú)實(shí)數(shù)根.

∴點(diǎn)P的坐標(biāo)為( , )或( ,- ).


【解析】(1)把A、B坐標(biāo)代入求出a、b的值,得到二次函數(shù)的解析式;(2)由圓P與直線AC相切,當(dāng)H在點(diǎn)C下方時(shí),由△CHP∽△AOC,得到CP∥x軸,求出點(diǎn)P的坐標(biāo);當(dāng)H′在點(diǎn)C上方時(shí),根據(jù)勾股定理求出OQ的值,得到點(diǎn)P的坐標(biāo);由已知得到△AED∽△AOC,得到比例,求出AD的值,根據(jù)勾股定理求出AC的值,將點(diǎn)A、C的坐標(biāo)代入拋物線的解析式,得到直線AC的解析式和直線PD的解析式,求出點(diǎn)P的坐標(biāo);此題是綜合題,難度較大,計(jì)算和解方程時(shí)需認(rèn)真仔細(xì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M為正方形ABCDAB的中點(diǎn),EAB延長(zhǎng)線上的一點(diǎn),MNDM,且交∠CBE的平分線于N

1)求證:MDMN

2)若將上述條件中的“MAB邊的中點(diǎn)改為“MAB邊上任意一點(diǎn),其余條件不變,則結(jié)論“MDMN”成立嗎?如果成立,請(qǐng)證明;如果不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)中學(xué)要為學(xué)?萍蓟顒(dòng)小組提供實(shí)驗(yàn)器材,計(jì)劃購(gòu)買(mǎi)A型、B型兩種型號(hào)的放大鏡.若購(gòu)買(mǎi)100個(gè)A型放大鏡和150個(gè)B型放大鏡需用1500元;若購(gòu)買(mǎi)120個(gè)A型放大鏡和160個(gè)B型放大鏡需用1720元.

(1)求每個(gè)A型放大鏡和每個(gè)B型放大鏡各多少元;

(2)學(xué)校決定購(gòu)買(mǎi)A型放大鏡和B型放大鏡共75個(gè),總費(fèi)用不超過(guò)570元,那么最多可以購(gòu)買(mǎi)多少個(gè)A型放大鏡?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 是⊙ 的直徑, 是⊙ 上一點(diǎn),∠ 的平分線交⊙ 于點(diǎn) ,交⊙ 的切線 于點(diǎn) ,過(guò)點(diǎn) ,交 的延長(zhǎng)線于點(diǎn)

(1)求證: 是⊙ 的切線;
(2)若 .求 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在5×5的方格紙中,每一個(gè)小正方形的邊長(zhǎng)都為1.

(1)BCD是不是直角?請(qǐng)說(shuō)明理由;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F分別是菱形ABCD的邊BC、CD上的點(diǎn),且∠EAF=∠D=60°,∠FAD=45°,則∠CFE=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車經(jīng)銷商購(gòu)進(jìn) 兩種型號(hào)的低排量汽車,其中 型汽車的進(jìn)貨單價(jià)比 型汽車的進(jìn)貨單價(jià)多2萬(wàn)元,經(jīng)銷商花50萬(wàn)元購(gòu)進(jìn) 型汽車的數(shù)量與花40萬(wàn)元購(gòu)進(jìn) 型汽車的數(shù)量相等.銷售中發(fā)現(xiàn) 型汽車的每周銷量 (臺(tái))與售價(jià) (萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系式 , 型汽車的每周銷量 (臺(tái))與售價(jià) (萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系式
(1)求 兩種型號(hào)的汽車的進(jìn)貨單價(jià);
(2)已知 型汽車的售價(jià)比 型汽車的售價(jià)高2萬(wàn)元/臺(tái),設(shè) 型汽車售價(jià)為 萬(wàn)元/臺(tái).每周銷售這兩種車的總利潤(rùn)為 萬(wàn)元,求 的函數(shù)關(guān)系式, 兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種車的總利潤(rùn)最大?最大總利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃參與一項(xiàng)工程建設(shè),甲隊(duì)單獨(dú)施工20天完成該項(xiàng)工程的,這時(shí)乙隊(duì)加入,兩隊(duì)還需同時(shí)施工16天,才能完成該項(xiàng)工程.

若甲隊(duì)單獨(dú)施工,需要______天才能完成任務(wù).

若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程?

若甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過(guò)30天,則乙隊(duì)至少施工多少天才能完成該項(xiàng)工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.

(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個(gè)整數(shù)點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且m為正整數(shù),求此拋物線的表達(dá)式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點(diǎn)C,點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)為D,設(shè)此拋物線在﹣3≤x≤﹣ 之間的部分為圖象G,如果圖象G向右平移n(n>0)個(gè)單位長(zhǎng)度后與直線CD有公共點(diǎn),求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案