【題目】已知命題“等腰三角形兩腰上的高線長相等”
(1)請寫出該命題的逆命題;
(2)判斷(1)中命題的真假,并畫出圖形,補充已知,求證,及證明過程.
圖形:
已知:在△ABC中,CD⊥AB,BE⊥AC,且______.
求證:______.
證明:
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)原命題和逆命題的關(guān)系,即調(diào)換條件和結(jié)論;
(2)根據(jù)(1)的條件和結(jié)論寫出已知和求證,再畫出圖形,然后結(jié)合圖形證明Rt△AEBE≌RtADC,證得AB=AC,即為等腰三角形.
解:(1)逆命題是如果一個三角形兩條邊上的高相等,那么這個三角形是等腰三角形;;
(2)已知:在△ABC中,CD⊥AB,BE⊥AC,且CD=BE,
求證:△ABC是等腰三角形.
證明:如圖,
∵BE、CD是△ABC的高,
∴CD⊥AB,BE⊥AC,
∵∠A=∠A,
∵BE=CD,
∴Rt△AEB≌Rt△ADC(AAS),
∴AB=AC,
∴△ABC是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點.
(1)求拋物線的解析式。
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】踏春時節(jié),某班學(xué)生集體組織親子游,沿著甌江口櫻花步道騎自行車,該班學(xué)生花了950元租了若干輛自行車,已知自行車的類型和租車價格如下表:
自行車類型 | 型車 | 型車 | 型車 |
座位教(個) | 2 | 3 | 4 |
租車價格(元/輛) | 30 | 45 | 55 |
(1)若同時租用、兩種類型的車,且共有65個座位,則應(yīng)租、類型車各多少輛?
(2)若型車租4輛,余下的租用型和型,要求每種車至少租用1輛,請你幫他們設(shè)計型車和型車的租車方案.
(3)若同時租用這三類車,且每種車至少租用1輛,則最多能租到______個座位.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設(shè)它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時,求y與x的函數(shù)關(guān)系式;
(3)當(dāng)0<x<2時,求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,線段,若點A在y軸上滑動,點B隨著線段AB在射線x軸上滑動,(A、B與O不重合),Rt△AOB的內(nèi)切⊙K分別與OA、OB、AB切于E、F、P.
(1)在上述變化過程中:Rt△AOB的周長,⊙K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由;
(2)當(dāng)時,求⊙K的半徑r;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決概率計算問題,可以直接利用模型,也可以轉(zhuǎn)化后再利用模型.
請解決以下問題:
(1)如圖,一個尋寶游戲,若寶物隨機(jī)藏在某一塊磚下(圖中每一塊磚形狀、大小完全相同),則寶物藏在陰影磚下的概率是多少?
(2)在1~9中隨機(jī)選取3個整數(shù),若以這3個整數(shù)為邊長構(gòu)成三角形的情況如下表:
請根據(jù)表中數(shù)據(jù),估計構(gòu)成鈍角三角形的概率是多少(精確到百分位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com