【題目】如圖,已知ABC中,AB=BC,以AB為直徑的圓OAC于點D,過點DDEBC,垂足為E,連接OE

1求證:DE是⊙O的切線;

2)若CD=,ACB=30°,求OE的長.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)連接OD、BD,OD||BC,DEBC所以DEOD.

(2)利用30°的特殊三角形求出DE長,再利用勾股定理得OE長.

試題解析:

1)證明:連接OD、BD,

AB是⊙O直徑,

∴∠ADB=90°,

BDAC,

AB=BC,

DAC中點,

OA=OB

ODBC,

DEBC,

DEOD

OD為半徑,

DE是⊙O的切線;

2)解:∵CD=ACB=30°,

BC=2

BD=BC=1,

AB=BC

∴∠A=C=30°,

BD=1,

AB=2BD=2,

OD=1,

RtCDB中,由三角形面積公式得:BC×DE=BD×CD,

=2DE,

DE=,在RtODE中,由勾股定理得:OE==

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,高,交于點,連接并延長交于點,則圖中共有______________________組全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,為了解這項政策的落實情況,有關(guān)部門就你某天在校體育活動時間是多少的問題,在某校隨機抽查了部分學(xué)生,再根據(jù)活動時間t(小時)進行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:

(1)此次抽查的學(xué)生數(shù)為   人;

(2)補全條形統(tǒng)計圖;

(3)從抽查的學(xué)生中隨機詢問一名學(xué)生,該生當天在校體育活動時間低于1小時的概率是   

(4)若當天在校學(xué)生數(shù)為1200人,請估計在當天達到國家規(guī)定體育活動時間的學(xué)生有   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了秒.

1時,求PC的長;

2為何值時,△NPC是以PC為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,已知直線軸于點,軸于點,的角平分線軸于點,過點作直線的垂線,交軸于點

1)求直線的解析式;

2)如圖2,若點為直線上的一個動點,過點軸,交直線于點,當四邊形為菱形時,求的面積;

3)如圖3,點軸上的一個動點,連接、,將沿翻折得到,當以點、為頂點的三角形是等腰三角形時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角△ABC沿BC方向平移得到△A'B'C',若,則BB'=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,AM∥CN,點 B 為平面內(nèi)一點,AB⊥BC B,過 B BD⊥ AM.

(1)求證:∠ABD=∠C;

(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,

①求證:∠ABF=∠AFB;

②求∠CBE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種品牌的多媒體教學(xué)設(shè)備,這兩種多媒體教學(xué)設(shè)備的進價和售價如表所示.

1)若該商場計劃購進兩種多媒體教學(xué)設(shè)備若干套,共需124萬元,全部銷售后可獲毛利潤36萬元.則該商場計劃購進A,B兩種品牌的多媒體教學(xué)設(shè)備各多少套?

2)通過市場調(diào)研,該商場決定在(1)中所購總數(shù)量不變的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量.若用于購進這兩種多媒體教學(xué)設(shè)備的總資金不超過120萬元,且全部銷售后可獲毛利潤不少于33.6萬元.問有幾種購買方案?并寫出購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,分別是,的中點,

1)求證:四邊形是菱形;

2)求的長.

查看答案和解析>>

同步練習冊答案