【題目】計算
(1)計算:(﹣1)2016﹣4cos60°+( 0﹣( 2;
(2)先化簡,再求值: ,其中3x+6y﹣1=0.

【答案】
(1)解:原式=1﹣2+1﹣9=2﹣11=﹣9
(2)解:原式= = = ,

由3x+6y﹣1=0,得到x+2y= ,

則原式=3.


【解析】(1)原式利用乘方的意義,零指數(shù)冪、負整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可得到結果;(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,將已知等式變形后代入計算即可求出值.此題考查了分式的化簡求值,以及實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.
【考點精析】解答此題的關鍵在于理解零指數(shù)冪法則的相關知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)圖解答

(1)如圖1,在菱形ABCD中,CE=CF,求證:AE=AF.
(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),DOA中點,PBC上以每秒1個單位的速度由CB運動,設運動時間為t秒.

(1)△ODP的面積S=________.

(2)t為何值時,四邊形PODB是平行四邊形?

(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,t的值,并求出Q點的坐標;若不存在請說明理由;

(4)若△OPD為等腰三角形請寫出所有滿足條件的點P的坐標(請直接寫出答案,不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2 x+c經(jīng)過原點O與點A(6,0)兩點,過點A作AC⊥x軸,交直線y=2x﹣2于點C,且直線y=2x﹣2與x軸交于點D.

(1)求拋物線的解析式,并求出點C和點D的坐標;
(2)求點A關于直線y=2x﹣2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;
(3)點P(x,y)是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點Q,設線段PQ的長為l,求l與x的函數(shù)關系式及l(fā)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,四邊形ABCD中,AB=3cmAD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.

(1)求證:AE=CF;

(2)求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標為(4,3),∠CAO的平分線與y軸相交于點D,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D、E分別為AB、AC的中點,則△ADE與△ABC的面積比為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

同步練習冊答案