【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣6,0)、B(2,0)、C(0,6)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為點(diǎn)E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)P的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫(xiě)出自變量x的取值范圍,并求出S的最大值;
(3)過(guò)點(diǎn)P(﹣3,m)作x軸的垂線,垂足為點(diǎn)F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P,求出P的坐標(biāo).(直接寫(xiě)出結(jié)果)
【答案】(1)拋物線解析式為:y=-x2﹣2x+6,拋物線的頂點(diǎn)D(﹣2,8);(2)9;(3)P′(,).
【解析】
1)由拋物線y=ax2+bx+c經(jīng)過(guò)A、B、C三點(diǎn),則代入求得a,b,c,進(jìn)而得解析式與頂點(diǎn)D.
(2)由P在AD上,則可求AD解析式表示P點(diǎn).由S△APE=PEyP,所以S可表示,進(jìn)而由函數(shù)最值性質(zhì)易得S最值.
(3)求出點(diǎn)P,過(guò)點(diǎn)P′作P′M⊥y軸于點(diǎn)M,再根據(jù)相關(guān)條件解答即可.
解:(1)∵拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣6,0),B(2,0),C(0,6)三點(diǎn),
∴,解得:,
∴拋物線解析式為:y=x2﹣2x+6,
∵,,
∴拋物線的頂點(diǎn)D(﹣2,8);
(2)∵A(﹣6,0),D(﹣2,8),
∴設(shè)AD的解析式y=2x+12,
∵點(diǎn)P在AD上,
∴P(x,2x+12),
∴S△APE=PEyP=×(﹣x)(2x+12)=﹣x2﹣6x,
當(dāng)x=-3時(shí),S最大=9;
(3)P′(,).
點(diǎn)P在AD上,
∴當(dāng)﹣3時(shí),y=2×(﹣3)+12=6,
∴點(diǎn)P(﹣3,6),
∴PF=6,PE=3,
過(guò)點(diǎn)P′作P′M⊥y軸于點(diǎn)M,
∵△PEF沿EF翻折得△P′EF,
∴∠PFE=∠P′FE,PF=P′F=6,PE=P′E=3,
∵PF∥y軸,
∴∠PFE=∠FEN,
∵∠PFE=∠P′FE,
∴∠FEN=∠P′FE,
∴EN=FN,
設(shè)EN=a,則FN=a,P′N=6﹣a,
在Rt△P′EN中,P′N2+P′E2=EN2,即(6﹣a)2+32=a2,解得:a=,
∵S△P′EN=P′NP′E=ENP′M,
∴P′M=,
在Rt△EMP′中,EM=,
∴OM=EO﹣EM=6﹣=,
∴P′(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.為此,某市就“你每天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示,其中分組情況是:
A組:;B組:
C組:D組:
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)C組的人數(shù)是;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(3)若該轄區(qū)約有24 000名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)國(guó)家規(guī)定體育活動(dòng)時(shí)間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時(shí),y≥0,
其中正確的結(jié)論是(填寫(xiě)代表正確結(jié)論的序號(hào))__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小清為班級(jí)辦黑板報(bào)時(shí)遇到一個(gè)難題,在版面設(shè)計(jì)過(guò)程中需要將一個(gè)半圓三等分,小華幫他設(shè)計(jì)了一個(gè)尺規(guī)作圖的方法.
小華的作法如下:
(1)作AB的垂直平分線CD交AB于點(diǎn)O;
(2)分別,以A、B為圓心,以AO(或BO)的長(zhǎng)為半徑畫(huà)弧,分別交半圓于點(diǎn)M、N;
(3)連接OM、ON即可
請(qǐng)根據(jù)該同學(xué)的作圖方法完成以下推理:
∵半圓AB
∴ 是直徑.
∵CD是線段AB的垂直平分線
∴OA=OB(依據(jù): )
∵OA=OM=
∴△OAM為等邊三角形(依據(jù): )
∴∠AOM=60°(依據(jù): )
同理可得∠BON=60°
∠AOM=∠BON=∠MON=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是半圓的圓心,半徑為4.C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,則FG=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店從廠家以21元的價(jià)格購(gòu)進(jìn)一批商品,該商品可以自行定價(jià),若每件商品售價(jià)為元,則可賣出(350-10)件,但物價(jià)局限定每件商品加價(jià)不能超過(guò)進(jìn)價(jià)的20%,商店計(jì)劃要賺400元,需要賣出多少件商品?每件商品應(yīng)售多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形OABC如圖放置,O為原點(diǎn).若點(diǎn)A(﹣1,2),點(diǎn)B的縱坐標(biāo)是,則點(diǎn)C的坐標(biāo)是( 。
A. (4,2) B. (2,4) C. (,3) D. (3,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com