【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.6米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.6米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點B、D、F在同一直線上).求旗桿EF的高度.(結(jié)果保留根號)
【答案】旗桿EF的高度為
【解析】
過點A作AM⊥EF于點M,過點C作CN⊥EF于點N.設(shè)CN=x,分別表示出EM、AM的長度,然后在Rt△AEM中,根據(jù)tan∠EAM= ,可得EF=DF+CD,代入求解.
過點A作AM⊥EF于點M,過點C作CN⊥EF于點N,
設(shè)CN=x,
在Rt△ECN中,
∵∠ECN=45°,
∴EN=CN=x,
∴EM=x+0.6-1.6=x-1,
∵BD=5,
∴AM=BF=5+x,
在Rt△AEM中,
∵∠EAM=30°
∴,
∴x-1=(x+5),
解得:x=4+3,
即DF=(4+3)(米);
∴EF=x+0.6=4+3+0.6=(米).
答:旗桿的高度約為米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于銷售單價,日銷售量,日銷售利潤的幾組對應(yīng)值如表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | 25 |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價x為多少元時,日銷售利潤w最大?最大利潤是多少元?
(3)當(dāng)銷售單價x為多少元時,日銷售利潤w在1500元以上?(請直接寫出x的范圍)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請你估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(2男1女)中隨機選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=,AD=3,點E從點B出發(fā),沿BC邊運動到點C,連結(jié)DE,點E作DE的垂線交AB于點F.在點E的運動過程中,以EF為邊,在EF上方作等邊△EFG,則邊EG的中點H所經(jīng)過的路徑長是( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F,使AE=CF,依次連接B,F,D,E各點.
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時,四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.
(1)當(dāng)∠OAD=30°時,求點C的坐標(biāo);
(2)設(shè)AD的中點為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時,求OA的長;
(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com