【題目】如圖1,AB是⊙O的直徑,過⊙O上一點(diǎn)C作直線lADl于點(diǎn)D

1)連接AC、BC,若∠DAC=BAC,求證:直線l是⊙O的切線;

2)將圖1的直線l向上平移,使得直線l與⊙O交于C、E兩點(diǎn),連接ACAEBE, 得到圖2 若∠DAC=45°,AD=2cm,CE=4cm,求圖2中陰影部分(弓形)的面積.

【答案】1)詳見解析;(2

【解析】

(1)連接OC, 由角平分線的定義和等腰三角形的性質(zhì),得從而得lOC,進(jìn)而即可得到結(jié)論;

2)由圓的內(nèi)接四邊形的性質(zhì)和圓周角定理的推論,得△ABE是等腰直角三角形,通過勾股定理得的長(zhǎng),從而求出,連接OE,求出,進(jìn)而即可求解.

(1) 連接OC,

,

∵∠DAC=BAC,

,

∵在RtADC中∠DAC+ACD=90°,

,即直線lOC,

∴直線l是⊙O的切線;

2)∵ 四邊形ACEB內(nèi)接于圓,

又∵直徑AB所對(duì)圓周角,

∴△ADC與△ABE都是等腰直角三角形,

,

連接OE,則,

,

∴圖中陰影部分面積=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),一次函數(shù)與反比例函數(shù)的圖象相交于A2,1B(-1,-2)兩點(diǎn),與軸相交于點(diǎn)C

1)分別求反比例函數(shù)和一次函數(shù)的解析式(關(guān)系式);

2)連接OA,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)開展了行車安全,方便居民的活動(dòng),對(duì)地下車庫作了改進(jìn).如圖,這小區(qū)原地下車庫的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i12.4,ABBC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時(shí)點(diǎn)B、CD在同一直線上).

1)求這個(gè)車庫的高度AB;

2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231cot13°≈4.331

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB

1)求證:P為線段AB的中點(diǎn);

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張畫有內(nèi)切圓⊙P的直角三角形紙片AOB置于平面直角坐標(biāo)系中,已知點(diǎn)A0,3),B4,0),⊙P與三角形各邊相切的切點(diǎn)分別為D、EF 將直角三角形紙片繞其右下角的頂點(diǎn)依次按順時(shí)針方向旋轉(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,,則直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數(shù)關(guān)系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N

3)連接OMMN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點(diǎn)AP是弧AB上的一個(gè)動(dòng)點(diǎn).

(1)求半徑OB的長(zhǎng);

(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延長(zhǎng)BP、CA交于點(diǎn)D,求線段DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),兩點(diǎn),直線軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為

1)求拋物線的解析式;

2)若,求的值;

3)若點(diǎn)是點(diǎn)關(guān)于直線OE的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案