(本題10分)

已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.

(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標(biāo)為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。

M1的坐標(biāo)是     ▲     

(2) 請你通過改變P點坐標(biāo),對直線M1 M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得 k﹦  ▲  ,   若點P的坐標(biāo)為(m,0)時,則b﹦ ▲   ;

(3) 依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

 

 

(1)(-1,2)

(2)-1 , m

(3)M1,M的坐標(biāo)分別為(,),(

解析:解:(1)如圖;M1 的坐標(biāo)為(-1,2)  ……2分

   (2) …………………4分(各2分)

   (3)由(2)知,直線M1 M的解析式為

       則(,)滿足

       解得 ,

       ∴ 

    ∴M1,M的坐標(biāo)分別為(,),(,).……………4分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)已知一個正比例函數(shù)和一個一次函數(shù)的圖象交于點P(-2,2),且一次函數(shù)的圖象與y軸相交于點Q(0,4)
【小題1】(1)求這兩個函數(shù)的解析式
【小題2】(2)在同一坐標(biāo)系內(nèi),分別畫出這兩個函數(shù)的圖象
【小題3】(3)求出的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)
已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標(biāo)為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。
M1的坐標(biāo)是     ▲     
(2) 請你通過改變P點坐標(biāo),對直線M1 M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得 k﹦  ▲ ,   若點P的坐標(biāo)為(m,0)時,則b﹦  ▲  ;
(3) 依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(山東萊蕪) 題型:解答題

(本題10分)
已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標(biāo)為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。
M1的坐標(biāo)是     ▲     
(2) 請你通過改變P點坐標(biāo),對直線M1 M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得 k﹦  ▲ ,   若點P的坐標(biāo)為(m,0)時,則b﹦  ▲  ;
(3) 依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(山東萊蕪) 題型:解答題

(本題10分)

已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.

(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標(biāo)為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。

M1的坐標(biāo)是     ▲     

(2) 請你通過改變P點坐標(biāo),對直線M1 M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得 k﹦  ▲  ,    若點P的坐標(biāo)為(m,0)時,則b﹦  ▲   ;

(3) 依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案