【題目】如圖,在中,,,,的平分線相交于點(diǎn)E,過(guò)點(diǎn)EAC于點(diǎn)F,則;

【答案】

【解析】

過(guò)EEGAB,交ACG,易得AG=EG,EF=CF,依據(jù)ABC∽△GEF,即可得到EGEFGF=345,故設(shè)EG=3k=AG,則EF=4k=CF,FG=5k,根據(jù)AC=10,可得3k+5k+4k=10,即k=,進(jìn)而得出EF=4k=

過(guò)EEGAB,交ACG,則∠BAE=AEG,
AE平分∠BAC,
∴∠BAE=CAE,
∴∠CAE=AEG,
AG=EG,
同理可得,EF=CF,
ABGE,BCEF
∴∠BAC=EGF,∠BCA=EFG
∴△ABC∽△GEF,
∵∠ABC=90°,AB=6BC=8,
AC=10
EGEFGF=ABBCAC=345,
設(shè)EG=3k=AG,則EF=4k=CFFG=5k,
AC=10
3k+5k+4k=10,
k=
EF=4k=

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.作DEAC交邊ABBC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(s).

(1)求AC的長(zhǎng).

(2)請(qǐng)用含t的代數(shù)式表示線段DE的長(zhǎng).

(3)當(dāng)點(diǎn)F在邊BC上時(shí),求t的值.

(4)設(shè)正方形DEFGABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(2,-3)和(4,5)。

(1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達(dá)式;

(3)在(2)的條件下,當(dāng)-2<x<2時(shí),直線y=m與該圖象有一個(gè)公共點(diǎn),求m的值或取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),被均勻分成等份,分別標(biāo)上、、、、五個(gè)數(shù)字.甲乙兩人玩一個(gè)游戲,其規(guī)則如下:任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,轉(zhuǎn)盤(pán)停止后,指針指向一個(gè)數(shù)字,如果所得的數(shù)字是偶數(shù),則甲勝;如果所得的數(shù)字是奇數(shù),則乙勝.

(1)轉(zhuǎn)出的數(shù)字是的概率是________

(2)轉(zhuǎn)出的數(shù)字不大于的概率是________

(3)轉(zhuǎn)出的數(shù)字是偶數(shù)的概率是________

(4)你認(rèn)為這樣的游戲規(guī)則對(duì)甲、乙兩人是否公平?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,為線段上一點(diǎn)(不與,重合),點(diǎn)為線段上一點(diǎn),,設(shè)

1)如圖(1),

①若,則____________,_______________

②若,,則__________________________

③寫(xiě)出的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖(2),當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),其它條件不變,請(qǐng)直接寫(xiě)出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對(duì)稱軸是直線x=-1;4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個(gè)檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤(rùn)元,每提高一個(gè)檔次,利潤(rùn)每件增加元.

1)每件利潤(rùn)為元時(shí),此產(chǎn)品質(zhì)量在第幾檔次?

2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個(gè)檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤(rùn)為元(其中為正整數(shù),且),求出關(guān)于的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤(rùn)為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷(xiāo)售這種商品,每天要獲得1500元利潤(rùn),那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?(3)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖①,在直角三角形ABC中,∠BAC=90,ADBC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);

(1)特例探究:如圖②,∠MAN=90,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B.C在∠MAN的邊AM、AN上,且AB=AC,CFAE于點(diǎn)F,BDAE于點(diǎn)D.證明:△ABD≌△CAF;

(2)歸納證明:如圖③,點(diǎn)B,C在∠MAN的邊AMAN上,點(diǎn)E,F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;

(3)拓展應(yīng)用:如圖④,在△ABC中,AB=ACAB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E.F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案