【題目】△ABC中,∠C=90°,點O為△ABC三條角平分線的交點,OD⊥BC于D , OE⊥AC于E , OF⊥AB于F , 且AB=10cm,BC=8cm,AC=6cm,則點O到三邊AB、AC、BC的距離為( 。.
A.2cm,2cm,2cm
B.3cm,3cm,3cm
C.4cm,4cm,4cm
D.2cm,3cm,5cm
【答案】A
【解析】連接OA , OB , OC , 則△BDO≌△BFO , △CDO≌△CEO , △AEO≌△AFO , ∴BD=BF , CD=CE , AE=AF , 又∵∠C=90°,OD⊥BC于D , OE⊥AC于E , 且O為△ABC三條角平分線的交點∴四邊形OECD是正方形,則點O到三邊AB、AC、BC的距離為CD長,∴AB=8-CD+6-CD=-2CD+14,又根據(jù)勾股定理可得:AB=10,即-2CD+14=10,∴CD=2,即點O到三邊AB、AC、BC的距離為2cm.
本題主要考查垂直平分線上的點到線段兩段的距離相等的性質(zhì)與邊的和差關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標(biāo);
(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程3x2﹣4x+8=0的根的情況是( )
A.有兩個相等的實數(shù)根B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標(biāo)分別為 (3,2),(-1,-1),則兩個正方形的位似中心的坐標(biāo)是( )
A.(1,0)
B.(-5,-1)
C.(1,0)或(-5,-1)
D.(1,0)或(-5,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解答.
(1)計算:5a2b÷(﹣ ab)(2ab2)2
(2)計算:20142﹣2013×2015
(3)因式分解:a2(x﹣y)+4b2(y﹣x).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體實驗.測得成人服藥后血液中藥物深度(微克/毫升)與服藥時間小時之間的函數(shù)關(guān)系如圖所示(當(dāng)時,與成反比).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段與之間的函數(shù)關(guān)系式;
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間為多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把y=-x2+4x-2化成y=a(x+m)2+n的形式,m,n的值分別是( )
A.m=-2,n=-2B.m=-2,n=-6C.m=2,n=-2D.m=-2,n=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com