【題目】如圖,已知ABC中,∠BAC90°ABAC6DBC邊一點,且BDDC12,以D為一個頂點作正方形DEFG,且DEBC,連接AE,將正方形DEFG繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當AE取得最大值時AG的長為______

【答案】2

【解析】

當點A、D、E在同一條直線上時,AE取得最大值,畫出圖形,過點AAMBC于點M,求出BC的長度,利用等腰直角三角形的性質(zhì)和勾股定理,求出AD的長,進而可得AG的長.

解:當點A、D、E在同一條直線上時,AE取得最大值.
過點AAMBC于點M


∵∠BAC=90°,AB=AC=6,
BC==6,
BM=CM=3,
BDDC=12,DE=BC,
BD=2,DE=EF=DG=FG=6,
DM=32,
RtADM中,AD=
RtADG中,AG=
故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙P的圓心是(3,a)(a3),⊙Py軸相切,函數(shù)yx的圖象被⊙P截得的弦AB的長為2,則a的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位射擊運動員參加射擊訓(xùn)練,各射擊20次,成績?nèi)缦卤硭荆?/span>

設(shè)甲、乙兩位運動員射擊成績的方差分別為S 2S 2,則下列說法正確的是

A. S 2S 2B. S 2S 2

C. S 2S 2D. 無法比較S 2S 2的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點 A,B,CD 依次在同一條直線上,點 E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=DAE=DF

(1)求證:四邊形 BFCE 是平行四邊形.

(2)若 AD=10,EC=3,∠EBD=60°,當四邊形 BFCE是菱形時,求 AB 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB12,AD8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CGBE,垂足為G,若EF2,則線段CG的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax24axc的圖像交x軸于A、B兩點(其中A點在B點的左側(cè)),交y軸于點C0,3).

1)若tanACO,求這個二次函數(shù)的表達式;

2)若OCOA、OB的比例中項.

①設(shè)這個二次函數(shù)的頂點為P,求PBC的面積;

②若My軸上一點,N為平面內(nèi)一點,問:是否存在這樣的M、N,使得以M、N、B、C為頂點的四邊形為矩形?若存在,請直接寫出所有符合條件的點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下面16×8的正方形網(wǎng)格中,每個小正方形的邊長為1個單位,ABC是格點三角形(頂點在網(wǎng)格交點處),請你畫出:

1ABC關(guān)于點P的位似ABC,且位似比為12;

2)以A.B.C.D為頂點的所有格點平行四邊形ABCD的頂點D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全教育,某校九(1)班組織了防溺水知識競賽,班委會決定購買鋼筆和圓珠筆對表現(xiàn)優(yōu)異的同學(xué)進行獎勵,同學(xué)們前往商店采購,商店里的阿姨說:購買3支鋼筆和2支圓珠筆共需8元,并且3支鋼筆比2支圓珠筆多花4

1)求鋼筆和圓珠筆每支各需多少元?

2)班委會決定購買鋼筆和圓珠筆共30支,且支出不超過50元,則最多能夠購買多少支鋼筆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在線段上,在的同側(cè)做等腰和等腰,分別交于點.對于下列結(jié)論:①;②;③2CB2=.其中正確的是______.

查看答案和解析>>

同步練習(xí)冊答案