【題目】小明參加班長競選,需進(jìn)行演講答辯與民主測評,民主測評時(shí)一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計(jì)圖及全班50位同學(xué)民主測評票數(shù)統(tǒng)計(jì)圖.
(1)求評委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?
【答案】解:(1) 小明演講答辯分?jǐn)?shù)的眾數(shù)是94分,
民主測評為“良好”票數(shù)的扇形的圓心角度數(shù)是:(1-10%-70%)×360°=72°。
(2) 演講答辯分:(95+94+92+90+94)÷5=93,
民主測評分:50×70%×2+50×20%×1=80,
∴小明的綜合得分為:93×0.4+80×0.6=85.2。
(3) 設(shè)小亮的演講答辯得分為x分,根據(jù)題意,得:82×0.6+0.4x≥85.2,
解得:x≥90。
答:小亮的演講答辯得分至少要90分。
【解析】(1)根據(jù)眾數(shù)的定義和所給的統(tǒng)計(jì)圖即可得出評委給小明演講答辯分?jǐn)?shù)的眾數(shù);用1減去一般和優(yōu)秀所占的百分比,再乘以360°,即可得出民主測評為“良好”票數(shù)的扇形圓心角的度數(shù)
(2)先去掉一個(gè)最高分和一個(gè)最低分,算出演講答辯分的平均分,再算出民主測評分,再根據(jù)規(guī)定即可得出小明的綜合得分。
(3)先設(shè)小亮的演講答辯得分為x分,根據(jù)題意列出不等式,即可得出小亮的演講答辯得至少分?jǐn)?shù)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,△AOM面積為2.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出其最小值和P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),將一個(gè)正六邊形各邊延長,構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)全等的矩形ABCD和EFGH如圖1擺放(點(diǎn)D和點(diǎn)G重合,點(diǎn)C和點(diǎn)H重合),點(diǎn)A、D(G)在同一條直線上,AB=6cm,BC=8cm.如圖2,△ABC從圖1位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s,AC與GH交于點(diǎn)P;同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s.點(diǎn)Q停止運(yùn)動(dòng)時(shí),△ABC也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6).
(1)當(dāng)t為何值時(shí),CQ∥FH;
(2)過點(diǎn)Q作QM⊥FH于點(diǎn)N,交GF于點(diǎn)M,設(shè)五邊形GBCQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時(shí)刻,使點(diǎn)M在線段PC的中垂線上?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是 所對弦AB上一動(dòng)點(diǎn),點(diǎn)Q是與弦AB所圍成的圖形的內(nèi)部的一定點(diǎn),作射線PQ交于點(diǎn)C,連接BC.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,P,C兩點(diǎn)間的距離為y1cm,B,C兩點(diǎn)間的距離為y2cm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),x的值為0).
小平根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小平的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.37 | 4.06 | 2.83 | m | 3.86 | 4.83 | 5.82 |
y2/cm | 2.68 | 3.57 | 4.90 | 5.54 | 5.72 | 5.79 | 5.82 |
經(jīng)測量m的值是(保留一位小數(shù)).
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△BCP為等腰三角形時(shí),AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x>0時(shí),的解集.
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com