【題目】如圖所示,E、F分別為平行四邊形ABCD邊AB、CD的中點,交CB的延長線于點G.
求證:;若,判斷四邊形DEBF的形狀,并說明理由.
【答案】(1)證明見解析;(2)四邊形DEBF是菱形;理由見解析.
【解析】分析:(1)根據(jù)已知條件證明,BE∥DF,從而得出四邊形DFBE是平行四邊形,即可證明DE∥BF,
(2)先證明,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.
詳解:(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
∵點E.F分別是AB、CD的中點,
∴
∴BE=DF,BE∥DF,
∴四邊形DFBE是平行四邊形,
∴DE∥BF;
(2)四邊形DEBF是菱形;理由如下:
∵,AG∥BD,AD∥BG,
∴四邊形AGBD是矩形,
∴
在Rt△ADB中
∵E為AB的中點,
∴AE=BE=DE,
∵四邊形DFBE是平行四邊形,
∴四邊形DEBF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx-5的圖象經(jīng)過點A(2,-1).
(1)求k的值;
(2)畫出這個函數(shù)的圖象;
(3)若將此函數(shù)的圖象向上平移m個單位后與坐標(biāo)軸圍成的三角形的面積為1,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各式
(1)﹣(﹣5)﹣(+7)
(2)|﹣5﹣8|+24÷(﹣3)
(3)﹣0.25÷(﹣)×(1﹣)
(4)36×()
(5)1÷[﹣(﹣1+1)]×4
(6)23﹣(1﹣0.5)××[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,在所給平面直角坐標(biāo)系中解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)作出將△ABC繞原點O按逆時針方向旋轉(zhuǎn)90°后所得的△A2B2C2;
(3)寫出點A1、A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k<0)的圖象與矩形ABCD的邊相交于E、F兩點,且BE=2AE,E(﹣1,2).
(1)求反比例函數(shù)的解析式;
(2)連接EF,求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個能被13整除的自然數(shù)我們稱為“十三數(shù)”,“十三數(shù)”的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357是“十三數(shù)”.
(1)判斷3253和254514是否為“十三數(shù)”,請說明理由.
(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為“間同數(shù)”.
①求證:任意一個四位“間同數(shù)”能被101整除.
②若一個四位自然數(shù)既是“十三數(shù)”,又是“間同數(shù)”,求滿足條件的所有四位數(shù)的最大值與最小值之差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與y軸相交于點A0,過點A0作軸的平行線交直線y=0.5x+1于點B1,過點 B1作軸的平行線交直線y=x+2于點A1,再過點作軸的平行線交直線y=0.5x+1于點B2,過點 B2作軸的平行線交直線y=x+2于點A2,…,依此類推,得到直線y=x+2上的點A1 ,A2 ,A3 ,…,與直線y=0.5x+1上的點B1,B2,B3,…,則A7B8的長為( )
A.64 B.128 C.256 D.512
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com