【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點D作EF∥BC,分別交AB、AC于E、F兩點,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長是__________;
(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為“若△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長;
(3)已知:如圖3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點D作DE∥BC,分別交AB、AC于E、F兩點,則EF與BE、CF之間又有何數(shù)量關(guān)系呢?直接寫出結(jié)論不證明.
【答案】(1)5;BE+CF=EF;20; (2)2;BE+CF=EF,證明見解析;△AEF的周長=18;(3)BE-CF=EF,理由見解析.
【解析】試題分析:(1)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;
(2)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;
(3)由(2)知BE=ED,CF=DF,然后利用等量代換即可證明BE、CF、EF有怎樣的數(shù)量關(guān)系.
試題解析:解:(1)BE+CF=EF.理由如下:
∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC.
∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5個,∴BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周長=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.
故答案為:5;BE+CF=EF;20;
(2)BE+CF=EF.∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD.∵EF∥BC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,∴等腰三角形有△BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.△AEF的周長=AE+EF+AF=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=8+10=18.
此時有兩個等腰三角形,EF=BE+CF,C△AEF=18.
(3)BE﹣CF=EF.由(1)知BE=ED.∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF.又∵ED﹣DF=EF,∴BE﹣CF=EF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列證明過程補(bǔ)充完整:
已知:如圖,點B.E分別在AC、DF上,AF分別交BD、CE于點M、N,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因為∠1=∠2(已知).
又因為∠1=∠ANC(______),
所以______(等量代換).
所以______∥______(同位角相等,兩直線平行).
所以∠ABD=∠C(______).
又因為∠A=∠F(已知),
所以______∥______(______).
所以______(兩直線平行,內(nèi)錯角相等).
所以∠C=∠D(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點E.
(1)∠B=30°,∠C=70°,求∠EAD的大小.
(2)若∠B<∠C,則2∠EAD與∠C-∠B是否相等?若相等,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:如圖1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度數(shù).
(1)麗麗同學(xué)看過圖形后立即口答出:∠APC=85°,請你補(bǔ)全她的推理依據(jù).
如圖2,過點P作PE∥AB,
∵AB∥CD,∴PE∥CD. ( )
∴∠A+∠APE=180°.
∠C+∠CPE=180°. ( )
∵∠PAB=140°,∠PCD=135°,
∴∠APE=40°,∠CPE=45°
∴∠APC=∠APE+∠CPE=85°.( )
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由.
(3)在(2)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的A′處,則AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)與小剛都住在安康小區(qū),在同一所學(xué)校讀書.某天早上,小強(qiáng)從安康小區(qū)站乘坐校車去學(xué)校,途中需停靠兩個站點才能到達(dá)學(xué)校站點,且每個站點停留分鐘,校車行駛途中始終保持勻速.當(dāng)天早上,小剛從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強(qiáng)乘坐的校車早分鐘到學(xué)校站點.他們乘坐的車輛從安康小區(qū)站出發(fā)所行駛路程(千米)與行駛時間(分鐘)之間的函數(shù)圖象如圖所示.
(1)求點的縱坐標(biāo)的值;
(2)小剛乘坐出租車出發(fā)后經(jīng)過多少分鐘追到小強(qiáng)所乘坐的校車?并求此時他們距學(xué)校站點的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,則∠ACB 的 度數(shù)( )
A. 90° B. 95° C. 100° D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)如圖①,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB;
(2)如圖②,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30°,求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com