精英家教網 > 初中數學 > 題目詳情

【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點DEF∥BC,分別交AB、ACE、F兩點,則圖中共有__________個等腰三角形;EFBE、CF之間的數量關系是__________,△AEF的周長是__________;

(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個等腰三角形;EFBE、CF之間的數量關系是什么?證明你的結論,并求出△AEF的周長;

(3)已知:如圖3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點DDE∥BC,分別交AB、ACE、F兩點,則EFBE、CF之間又有何數量關系呢?直接寫出結論不證明

【答案】(1)5;BE+CF=EF;20; (2)2;BE+CF=EF,證明見解析;AEF的周長=18;(3)BE-CF=EF,理由見解析.

【解析】試題分析:(1)根據角平分線的定義可得EBD=∠CBD,∠FCD=∠BCD,再根據兩直線平行,內錯角相等可得EDB=∠CBD,∠FDC=∠BCD,然后求出EBD=∠EDB,∠FDC=∠BCD,再根據等角對等邊可得BE=DE,CF=DF,然后解答即可;

(2)根據角平分線的定義可得EBD=∠CBD,∠FCD=∠BCD,再根據兩直線平行,內錯角相等可得EDB=∠CBD,∠FDC=∠BCD,然后求出EBD=∠EDB,∠FDC=∠BCD,再根據等角對等邊可得BE=DE,CF=DF,然后解答即可;

(3)由(2)知BE=EDCF=DF,然后利用等量代換即可證明BECF、EF有怎樣的數量關系.

試題解析:解:(1)BE+CF=EF.理由如下:

AB=AC,∴∠ABC=∠ACB.∵BD平分ABCCD平分ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC

EFBC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有ABC,△AEF,△DEB,△DFC,△BDC5個,BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周長=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.

故答案為:5;BE+CF=EF;20;

(2)BE+CF=EF.∵BD平分ABC,CD平分ACB,∴∠EBD=∠CBD,∠FCD=∠BCD.∵EFBC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DECF=DF,∴等腰三角形有BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.△AEF的周長=AE+EF+AF=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=8+10=18.

此時有兩個等腰三角形,EFBECFCAEF=18.

(3)BECF=EF由(1)知BE=ED.∵EFBC,∴∠EDC=∠DCG=∠ACD,∴CF=DFEDDF=EF,∴BECF=EF

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】將下列證明過程補充完整:

已知:如圖,點B.E分別在AC、DF上,AF分別交BD、CE于點M、N,1=2,A=F.

求證:∠C=D.

證明:因為∠1=2(已知).

又因為∠1=ANC(______),

所以______(等量代換).

所以____________(同位角相等,兩直線平行).

所以∠ABD=C(______).

又因為∠A=F(已知),

所以____________(______).

所以______(兩直線平行,內錯角相等).

所以∠C=D(______).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,ADBC,AE平分∠BACBC于點E.

(1)B=30°,C=70°,求∠EAD的大。

(2)若∠B<C,則2EAD與∠C-B是否相等?若相等,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情景:如圖1,ABCD,PAB=140°,PCD=135°,求∠APC的度數.

(1)麗麗同學看過圖形后立即口答出:∠APC=85°,請你補全她的推理依據.

如圖2,過點PPEAB,

ABCD,PECD. (   

∴∠A+APE=180°.

C+CPE=180°. (   

∵∠PAB=140°,PCD=135°,

∴∠APE=40°,CPE=45°

∴∠APC=APE+CPE=85°.(   

問題遷移:

(2)如圖3,ADBC,當點PA、B兩點之間運動時,∠ADP=α,BCP=β,求∠CPD與∠α、β之間有何數量關系?請說明理由.

(3)在(2)的條件下,如果點PA、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD與∠α、β之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCDEAC上一點,∠ABE=∠AEB,∠CDE=∠CED

求證:BEDE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的A′處,則AP的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小強與小剛都住在安康小區(qū),在同一所學校讀書.某天早上,小強從安康小區(qū)站乘坐校車去學校,途中需?績蓚站點才能到達學校站點,且每個站點停留分鐘,校車行駛途中始終保持勻速.當天早上,小剛從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強乘坐的校車早分鐘到學校站點.他們乘坐的車輛從安康小區(qū)站出發(fā)所行駛路程(千米)與行駛時間(分鐘)之間的函數圖象如圖所示.

(1)求點的縱坐標的值;

(2)小剛乘坐出租車出發(fā)后經過多少分鐘追到小強所乘坐的校車?并求此時他們距學校站點的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BDGE,AQ 平分∠FAC,交 BD Q,GFA=50°,Q=25°,則∠ACB 度數( )

A. 90° B. 95° C. 100° D. 105°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.

(1)如圖①,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB;

  

(2)如圖②,將△ABC繞頂點B按順時針方向旋轉60°,得到△DBE,連接AD,DC,∠DCB=30°,求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

同步練習冊答案