【題目】如圖,等邊△ABC與正方形DEFG重疊,其中D、E兩點分別在AB、BC上,且BD=BE,若AB=6,DE=2,則△EFC的面積為___.
【答案】2
【解析】
過F作FQ⊥BC于Q,根據(jù)等邊三角形的性質(zhì)和判定和正方形的性質(zhì)求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.
解:過F作FQ⊥BC于Q,
則∠FQE=90°,
∵△ABC是等邊三角形,AB=6,
∴BC=AB=6,∠B=60°,
∵BD=BE,DE=2,
∴△BED是等邊三角形,且邊長為2,
∴BE=DE=2,∠BED=60°,
∴CE=BC﹣BE=4,
∵四邊形DEFG是正方形,DE=2,
∴EF=DE=2,∠DEF=90°,
∴∠FEC=180°﹣60°﹣90°=30°,
∴QF=EF=1,
∴△EFC的面積=×CE×FQ=×4×1=2,
故答案為:2
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,如果一個矩形的寬與長之比為,那么這個矩形就稱為黃金矩形.如圖,已知A、B兩點都在反比例函數(shù)y=(k>0)位于第一象限內(nèi)的圖像上,過A、B兩點分別作坐標軸的垂線,垂足分別為C、D和E、F,設AC與BF交于點G,已知四邊形OCAD和CEBG都是正方形.設FG、OC的中點分別為P、Q,連接PQ.給出以下結(jié)論:①四邊形ADFG為黃金矩形;②四邊形OCGF為黃金矩形;③四邊形OQPF為黃金矩形.以上結(jié)論中,正確的是( )
A. ①B. ②C. ②③D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線C1與拋物線C2與x軸有相同的交點M,N(點M在點N的左側(cè)),與x軸的交點分別為A,B,且點A的坐標為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m(m>0).
(1)求M,N兩點的坐標;
(2)在第三象限內(nèi)的拋物線C1上是否存在一點P,使得△PAM的面積最大,若存在,求出△PAM的面積的最大值;若不存在,說明理由;
(3)設拋物線C2的頂點為點D,順次連接A,D,B,N,若四邊形ADBN是平行四邊形,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變。ㄌ“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+5與x軸交于點A(1,0)和點B(5,0),頂點為M.點C在x軸的負半軸上,且AC=AB,點D的坐標為(0,3),直線l經(jīng)過點C、D.
(1)求拋物線的表達式;
(2)點P是直線l在第三象限上的點,聯(lián)結(jié)AP,且線段CP是線段CA、CB的比例中項,
求tan∠CPA的值;
(3)在(2)的條件下,聯(lián)結(jié)AM、BM,在直線PM上是否存在點E,使得∠AEM=∠AMB.若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某市初中學生每天進行體育鍛煉的時間情況,隨機抽樣調(diào)查了100名初中學生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.
請根據(jù)圖表信息解答下列問題:
(1)a=_____;
(2)補全條形統(tǒng)計圖;
(3)小王說:“我每天的鍛煉時間是調(diào)查所得數(shù)據(jù)的中位數(shù)”,問小王每天進行體育鍛煉的時間在什么范圍內(nèi)?
(4)據(jù)了解該市大約有30萬名初中學生,請估計該市初中學生每天進行體育鍛煉時間在1小時以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見.如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠BOD=45°,當將遮陽傘撐開至OE位置時,測得∠BOE=60°,且此時遮陽傘邊沿上升的豎直高度BC為30cm,求當遮陽傘撐開至OE位置時,傘下半徑EC的長.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商經(jīng)營甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預計夏季某一段時間內(nèi),甲種水果的銷售利潤(萬元)與進貨量x(噸)近似滿足函數(shù)關系,乙種水果的銷售利潤(萬元)與進貨量x(噸)之間的函數(shù)關系如圖所示.
(1)求(萬元)與x(噸)之間的函數(shù)關系式;
(2)如果該批發(fā)商準備進甲、乙兩種水果共10噸,設乙種水果的進貨量為t噸,請你求出這兩種水果所獲得的銷售利潤總和W(萬元)與t(噸)之間的函數(shù)關系式.并求出這兩種水果各進多少噸時獲得的銷售利潤總和最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com