【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.

(1)求證:四邊形EBFD是平行四邊形;

(2)若AD=AE=2,A=60°,求四邊形EBFD的周長.

【答案】(1)見解析28

【解析】

試題分析:1、在ABCD中,AB=CD,ABCD,又E、F分別是邊AB、CD的中點,所以BE=CF,因此四邊形EBFD是平行四邊形

2、由AD=AE=2,A=60°知ADE是等邊三角形,又E、F分別是邊AB、CD的中點,四邊形EBFD是平行四邊形,所以EB=BF=FD=DE=2,四邊形EBFD是平行四邊形的周長是2+2+2+2=8

解:(1)在ABCD中,

AB=CD,ABCD.

E、F分別是AB、CD的中點,

BE=DF.

四邊形EBFD是平行四邊形

(2)AD=AE,A=60°,

∴△ADE是等邊三角形.

DE=AD=2,

BE=AE=2,

由(1)知四邊形EBFD是平行四邊形,

四邊形EBFD的周長=2(BE+DE)=8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有十張形狀大小完全相同的牌,正面分別標有數(shù)字110.從中選出一些牌,將這些牌背面朝上,洗勻后放在桌子上.甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;其余情況,乙獲勝.

1)若選出三張分別標有數(shù)字23、5的牌,這個游戲公平嗎?請利用樹狀圖或列表法來解釋說明.

2)乙說:“若我在23、5三張牌外再選一張牌,共四張牌進行游戲,則我可以讓自己獲勝的可能性比甲大”,請判斷乙的說法是否正確,若正確,請寫出乙可以再選哪些牌讓自己獲勝的可能性比甲大;若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程.

1)求證:這個方程有兩個不相等的實數(shù)根.

2)如果這個方程的兩個實數(shù)根分別為,且,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,E、F分別是AB、DC邊上的點,且AE=CF,

1)求證:.

2)若DEB=90,求證四邊形DEBF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與證明:

(1)如圖1,直線經過正三角形的項點,在直線上取兩點,使得,.通過觀察或測量,猜想線段之間滿足的數(shù)量關系,并子以證明:

(2)(1)中的直線繞著點逆時針方向旋轉一個角度到如圖2的位置,并使,.通過觀察或測量,猜想線段之間滿足的數(shù)量關系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.

【問題引入】

(1)若點O是AC的中點, ,求的值;

溫馨提示:過點A作MN的平行線交BN的延長線于點G.

【探索研究】

(2)若點O是AC上任意一點(不與A,C重合),求證: ;

【拓展應用】

(3)如圖②所示,點P是△ABC內任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,于點,的角平分線相交于點,為邊的中點,,則

A.125°B.145°C.175°D.190°

查看答案和解析>>

同步練習冊答案