【題目】如圖,在□ABCD中,E、F分別是AB、DC邊上的點,且AE=CF,

1)求證:.

2)若DEB=90,求證四邊形DEBF是矩形.

【答案】1)利用SAS證明;(2)證明見解析.

【解析】

試題此題考查了平行四邊形的判定與性質(zhì)、矩形的判定以及全等三角形的判定與性質(zhì).注意有一個角是直角的平行四邊形是矩形,首先證得四邊形ABCD是平行四邊形是關(guān)鍵.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在ABCD中,且AE=CF,利用一組對邊平行且相等的四邊形是平行四邊形,可證得四邊形DEBF是平行四邊形,又由∠DEB=90°,可證得四邊形DEBF是矩形.

試題解析:(1四邊形ABCD是平行四邊形,

∴AD=CB,∠A=∠C

△ADE△CBF中,

∴△ADE≌△CBFSAS).

2四邊形ABCD是平行四邊形,

∴AB=CDAB∥CD,

∵AE=CF∴BE=DF,

四邊形ABCD是平行四邊形,

∵∠DEB=90°,四邊形DEBF是矩形.

故答案為(1)利用SAS證明;(2)證明見解析.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn)

如圖2,固定ABC,使DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:

①線段DEAC位置關(guān)系是_________;

②設BDC的面積為S1,AEC的面積為S2,則S1S2的數(shù)量關(guān)系是____________.

(2)猜想論證

DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究

已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//ABBC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應的BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一副三角板拼合在一起,邊重合,,,.當點從點出發(fā)沿向下滑動時,點同時從點出發(fā)沿射線向右滑動.當點從點滑動到點時,連接,則的面積最大值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=x2+mx+b的圖象C′都經(jīng)過點B0,1)和點C,且圖象C′過點A20).

1)求二次函數(shù)的最大值;

2)設使y2y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;

3)若點F、G在圖象C′上,長度為的線段DE在線段BC上移動,EFDG始終平行于y軸,當四邊形DEFG的面積最大時,在x軸上求點P,使PD+PE最小,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)

(2)(2a3b4ab3(-ab)-(2a2)2(-b2

(3)先化簡,再求代數(shù)式(a2b)(a2b)(a2b)24ab 的值,其中 a1,b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點M,且DM2,平行四邊形ABCD的周長是14,則BC的長等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知,其中,滿足,點為第三象限內(nèi)一點.

1)若到坐標軸的距離相等,,且,求點坐標

2)若,請用含的式子表示的面積.

3)在(2)條件下,當時,在軸上有點,使得的面積是的面積的2倍,請求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州某企業(yè)捐資購買了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下(假設每輛車均滿載):甲載重5噸,運費400元/車,乙載重8噸,運費500元/車,丙載重10噸,運費600元/車,該公司計劃用甲、乙、丙三種車型同時參與運送并完成任務,已知它們的總輛數(shù)為15輛,要使費用最省,所使用的甲、乙、丙三種車型的輛數(shù)分別是______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:基本不等式a0,b0),當且僅當ab時,等號成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(小)值問題的有力工具.

例如:在x0的條件下,當x為何值時,x+有最小值,最小值是多少?

解:∵x0,0即是x+2

x+2

當且僅當xx1時,x+有最小值,最小值為2

請根據(jù)閱讀材料解答下列問題

1)若x0,函數(shù)y2x+,當x為何值時,函數(shù)有最小值,并求出其最小值.

2)當x0時,式子x2+1+2成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案