【題目】在不透明的袋子中有四張標(biāo)有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。

小明畫出樹形圖如下:

小華列出表格如下:

第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問題:

(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是:隨機抽出一張卡片后 (填放回不放回),再隨機抽出一張卡片;

(2)根據(jù)小華的游戲規(guī)則,表格中表示的有序數(shù)對為

(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為淮獲勝的可能性大?為什么?

【答案】(1)放回

(2)(3,2

(3)小明獲勝的可能性大。理由見解析

【解析】

(1)根據(jù)樹形圖法的作法可知。

(2)根據(jù)排列順序可知。

(3)游戲公平與否,比較概率即知。

解:(1)放回。

(2)(3,2)。

(3)理由如下:

根據(jù)小明的游戲規(guī)則,共有12種等可能結(jié)果,數(shù)字之和為奇數(shù)的有8種,

概率為:。

根據(jù)小華的游戲規(guī)則,共有16種等可能結(jié)果,數(shù)字之和為奇數(shù)的有8種,

概率為:。

,小明獲勝的可能性大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-x-m2+m2+1有最大值3,則實數(shù)m的值為( 。

A. 2-B. 或-C. -D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當(dāng)點P到達點A時,點Q也隨之停止運動.設(shè)運動時間為t(s),當(dāng)APQ是直角三角形時,t的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有“拋物線系”y=-(xm2+4m-3,頂點為點P,這些拋物線的形狀與拋物線 y=-x2 相同,但頂點位置不同.

(1)填寫下表,并說出:在m取不同數(shù)值時,點P位置的變化具有什么特征?

m的值

-1

0

1

2

P坐標(biāo)

(2)若拋物線的對稱軸是直線x=1,則可確定m的值.點Mpq)為此拋物線上的一個動點,且﹣1<p<2,而直線ykx-4(k≠0)始終經(jīng)過點M

①求此拋物線與x軸的交點坐標(biāo);

②求k的取值范圍.

(3)若點Qx軸上,點S(0,-1)在y軸上,點R在坐標(biāo)平面內(nèi),且以點P,QR,S為頂點的四邊形是正方形,試直接寫出所有點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點E的直線DE,垂足為點D,且ME平分∠DMN

求證:(1DE是⊙O的切線;

2ME2MDMN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yx的圖象與函數(shù)y的圖象在第一象限內(nèi)交于點A、B(2,m)兩點.

(1)請求出函數(shù)y的解析式;

(2)請根據(jù)圖象判斷當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍;

(3)C是函數(shù)y在第一象限圖象上的一個動點,當(dāng)OBC的面積為3時,請求出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:⊙O的直徑AB與弦AC的夾角∠A30°,過點C作⊙O的切線交AB的延長線于點P

1)求證:ACCP;

2)若PC6,求圖中陰影部分的面積(結(jié)果精確到0.1).(參考數(shù)據(jù):,π3.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將ADF繞點A順時針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運動員各參加10場比賽,各場得分情況如圖,下列四個結(jié)論中,正確的是(  )

A. 甲運動員得分的平均數(shù)小于乙運動員得分的平均數(shù)B. 甲運動員得分的中位數(shù)小于乙運動員得分的中位數(shù)

C. 甲運動員得分的最小值大于乙運動員得分的最小值D. 甲運動員得分的方差大于乙運動員得分的方差

查看答案和解析>>

同步練習(xí)冊答案