【題目】我國(guó)古代數(shù)學(xué)家趙爽利用弦圖證明了勾股定理,這是著名的趙爽弦圖(如圖1).它是由四個(gè)全等的直角三角形拼成了內(nèi)、外都是正方形的美麗圖案.在弦圖中(如圖2),已知點(diǎn)O為正方形ABCD的對(duì)角線BD的中點(diǎn),對(duì)角線BD分別交AH,CF于點(diǎn)P、Q.在正方形EFGHEH、FG兩邊上分別取點(diǎn)M,N,且MN經(jīng)過(guò)點(diǎn)O,若MH3ME,BD2MN4 .則△APD的面積為_____

【答案】5

【解析】

連接FH,作EKMN,OLDG,通過(guò)正方形的性質(zhì)和全等三角形的性質(zhì)以及勾股定理可求EM1,可得EH4,由勾股定理可求HD2AH6,由平行線的性質(zhì)可得PH1,即可求解.

如圖,連接FH,作EKMNOLDG

∵四邊形ABCD是正方形,且BD2MN4

MN2,AB2

∵四邊形EFGH是正方形

FOHOEHFG

∴∠HMO=∠FNO,∠MHO=∠NFO,且FOHO

∴△MHO≌△FNOAAS

MHFN

MH3ME

MHFN3EM,EHEF4EM

EKKN,EHFG

∴四邊形EMNK是平行四邊形

MNEK2,KNEM

FK2EM

EF2+FK2EK2,

16EM2+4EM220

EM1

EH4,

AD2=(AE+42+DH2,且AEDH

DHAE2

AH6

PHOL

PH1

AP5

SAPD×5×25

故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)F、C⊙O上且連接AC、AF,過(guò)點(diǎn)CCD⊥AFAF的延長(zhǎng)線于點(diǎn)D.

(1)求證:CD⊙O的切線;

(2), CD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點(diǎn)分別從A,B同時(shí)出發(fā),點(diǎn)P沿折線AB﹣BC運(yùn)動(dòng),在AB上的速度是2cm/s,在BC上的速度是2cm/s;點(diǎn)Q在BD上以2cm/s的速度向終點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)P作PN⊥AD,垂足為點(diǎn)N.連接PQ,以PQ,PN為鄰邊作PQMN.設(shè)運(yùn)動(dòng)的時(shí)間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2

(1)當(dāng)PQ⊥AB時(shí),x等于多少;

(2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;

(3)直線AM將矩形ABCD的面積分成1:3兩部分時(shí),直接寫(xiě)出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班組織班級(jí)聯(lián)歡會(huì),最后進(jìn)入抽獎(jiǎng)環(huán)節(jié),每名同學(xué)都有一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)方案如下:將一副撲克牌中點(diǎn)數(shù)為“2”“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再?gòu)挠嘞碌?/span>4張牌中抽出1張牌,記錄兩張牌點(diǎn)數(shù)后放回,完成一次抽獎(jiǎng),記每次抽出兩張牌點(diǎn)數(shù)之差為,按表格要求確定獎(jiǎng)項(xiàng).

1)用列表或畫(huà)樹(shù)狀圖的方法求出甲同學(xué)獲得一等獎(jiǎng)的概率;

2)是否每次抽獎(jiǎng)都會(huì)獲獎(jiǎng),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)可以讓人高雅,益智,豪情逸致,某中學(xué)為開(kāi)拓學(xué)生視野,開(kāi)展課外學(xué)數(shù)學(xué)活動(dòng),隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外學(xué)習(xí)數(shù)學(xué)時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:

1)本次調(diào)查的學(xué)生總數(shù)為____________人,被調(diào)查學(xué)生課外學(xué)習(xí)數(shù)學(xué)時(shí)間的中位數(shù)是____________小時(shí),眾數(shù)是      小時(shí);

2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,課外學(xué)習(xí)數(shù)學(xué)時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是____________;

4)九年級(jí)有學(xué)生700人,估計(jì)九年級(jí)一周課外學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形中,,,的一點(diǎn),且上一點(diǎn),射線的延長(zhǎng)線于點(diǎn)于點(diǎn),連結(jié),,于點(diǎn)

1)當(dāng)點(diǎn)中點(diǎn)時(shí),則 , ;(直接寫(xiě)出答案)

2)在整個(gè)運(yùn)動(dòng)過(guò)程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由;

3)若為等腰三角形時(shí),請(qǐng)求出所有滿足條件的的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)學(xué)生數(shù)學(xué)期末考試情況,小方隨機(jī)抽取了部分學(xué)生的數(shù)學(xué)成績(jī)(分?jǐn)?shù)都為整數(shù))為樣本,分為A分;B分;C分;D分四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果制成如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

1)這次隨機(jī)抽取的學(xué)生共有多少人?

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校九年級(jí)共有學(xué)生人,若分?jǐn)?shù)為分以上()為及格,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)榧案竦膶W(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)DAB邊上,點(diǎn)D到點(diǎn)A的距離與點(diǎn)D到點(diǎn)C的距離相等.

(1)利用尺規(guī)作圖作出點(diǎn)D,不寫(xiě)作法但保留作圖痕跡.

(2)若ABC的底邊長(zhǎng)5,周長(zhǎng)為21,求BCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+cab,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)(30)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①ab0;②2a+b=0;③3a+c0;④當(dāng)﹣1x3時(shí),y0;其中正確的是(

A.①②B.①②④C.②③④D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案