【題目】我國(guó)古代數(shù)學(xué)家趙爽利用弦圖證明了勾股定理,這是著名的趙爽弦圖(如圖1).它是由四個(gè)全等的直角三角形拼成了內(nèi)、外都是正方形的美麗圖案.在弦圖中(如圖2),已知點(diǎn)O為正方形ABCD的對(duì)角線BD的中點(diǎn),對(duì)角線BD分別交AH,CF于點(diǎn)P、Q.在正方形EFGH的EH、FG兩邊上分別取點(diǎn)M,N,且MN經(jīng)過(guò)點(diǎn)O,若MH=3ME,BD=2MN=4 .則△APD的面積為_____.
【答案】5
【解析】
連接FH,作EK∥MN,OL⊥DG,通過(guò)正方形的性質(zhì)和全等三角形的性質(zhì)以及勾股定理可求EM=1,可得EH=4,由勾股定理可求HD=2,AH=6,由平行線的性質(zhì)可得PH=1,即可求解.
如圖,連接FH,作EK∥MN,OL⊥DG
∵四邊形ABCD是正方形,且BD=2MN=4
∴MN=2,AB=2
∵四邊形EFGH是正方形
∴FO=HO,EH∥FG
∴∠HMO=∠FNO,∠MHO=∠NFO,且FO=HO
∴△MHO≌△FNO(AAS)
∴MH=FN
∵MH=3ME,
∴MH=FN=3EM,EH=EF=4EM
∴EK∥KN,EH∥FG
∴四邊形EMNK是平行四邊形
∴MN=EK=2,KN=EM
∴FK=2EM
∵EF2+FK2=EK2,
∴16EM2+4EM2=20
∴EM=1
∴EH=4,
∵AD2=(AE+4)2+DH2,且AE=DH
∴DH=AE=2
∴AH=6
∵PH∥OL
∴
∴PH=1
∴AP=5
∴S△APD=×5×2=5
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)F、C在⊙O上且, 連接AC、AF,過(guò)點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于點(diǎn)D.
(1)求證:CD是⊙O的切線;
(2)若, CD=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點(diǎn)分別從A,B同時(shí)出發(fā),點(diǎn)P沿折線AB﹣BC運(yùn)動(dòng),在AB上的速度是2cm/s,在BC上的速度是2cm/s;點(diǎn)Q在BD上以2cm/s的速度向終點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)P作PN⊥AD,垂足為點(diǎn)N.連接PQ,以PQ,PN為鄰邊作PQMN.設(shè)運(yùn)動(dòng)的時(shí)間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2)
(1)當(dāng)PQ⊥AB時(shí),x等于多少;
(2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;
(3)直線AM將矩形ABCD的面積分成1:3兩部分時(shí),直接寫(xiě)出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班組織班級(jí)聯(lián)歡會(huì),最后進(jìn)入抽獎(jiǎng)環(huán)節(jié),每名同學(xué)都有一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)方案如下:將一副撲克牌中點(diǎn)數(shù)為“2”,“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再?gòu)挠嘞碌?/span>4張牌中抽出1張牌,記錄兩張牌點(diǎn)數(shù)后放回,完成一次抽獎(jiǎng),記每次抽出兩張牌點(diǎn)數(shù)之差為,按表格要求確定獎(jiǎng)項(xiàng).
(1)用列表或畫(huà)樹(shù)狀圖的方法求出甲同學(xué)獲得一等獎(jiǎng)的概率;
(2)是否每次抽獎(jiǎng)都會(huì)獲獎(jiǎng),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)可以讓人高雅,益智,豪情逸致,某中學(xué)為開(kāi)拓學(xué)生視野,開(kāi)展“課外學(xué)數(shù)學(xué)”活動(dòng),隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外學(xué)習(xí)數(shù)學(xué)時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生總數(shù)為____________人,被調(diào)查學(xué)生課外學(xué)習(xí)數(shù)學(xué)時(shí)間的中位數(shù)是____________小時(shí),眾數(shù)是 小時(shí);
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,課外學(xué)習(xí)數(shù)學(xué)時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是____________;
(4)九年級(jí)有學(xué)生700人,估計(jì)九年級(jí)一周課外學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,,,是的一點(diǎn),且,是上一點(diǎn),射線交的延長(zhǎng)線于點(diǎn),交于點(diǎn),連結(jié),,交于點(diǎn).
(1)當(dāng)點(diǎn)為中點(diǎn)時(shí),則 , ;(直接寫(xiě)出答案)
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由;
(3)若為等腰三角形時(shí),請(qǐng)求出所有滿足條件的的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)學(xué)生數(shù)學(xué)期末考試情況,小方隨機(jī)抽取了部分學(xué)生的數(shù)學(xué)成績(jī)(分?jǐn)?shù)都為整數(shù))為樣本,分為A.分;B.分;C.分;D.分四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果制成如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校九年級(jí)共有學(xué)生人,若分?jǐn)?shù)為分以上(含分)為及格,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)榧案竦膶W(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AB邊上,點(diǎn)D到點(diǎn)A的距離與點(diǎn)D到點(diǎn)C的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn)D,不寫(xiě)作法但保留作圖痕跡.
(2)若△ABC的底邊長(zhǎng)5,周長(zhǎng)為21,求△BCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④當(dāng)﹣1<x<3時(shí),y>0;其中正確的是( )
A.①②B.①②④C.②③④D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com