【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一點,且BD=CD,G是BC邊上的一動點,GE∥AD分別交直線AC,AB于F,E兩點.
(1)AD= ;
(2)如圖1,當(dāng)GF=1時,求的值;
(3)如圖2,隨點G位置的改變,FG+EG是否為一個定值?如果是,求出這個定值,如果不是,請說明理由.
【答案】(1)AD=;(2);(3)FG+EG是一個定值,為 .
【解析】
(1)先由勾股定理求出BC的長,再由直角三角形斜邊中線的性質(zhì)可求出AD的長;
(2)先證FG=CG=1,通過BD=CDBC=AD,求出BG的長,再證△BGE∽△BDA,利用相似三角形的性質(zhì)可求出的值;
(3)由(2)知FG=CG,再證EG=BG,即可證FG+EG=BC=2.
(1)∵∠BAC=90°,且BD=CD,
∴ADBC.
∵BC2,
∴AD2.
故答案為:;
(2)如圖1.
∵GF∥AD,
∴∠CFG=∠CAD.
∵BD=CDBC=AD,
∴∠CAD=∠C,
∴∠CFG=∠C,
∴CG=FG=1,
∴BG=21.
∵AD∥GE,
∴△BGE∽△BDA,
∴;
(3)如圖2,隨點G位置的改變,FG+EG是一個定值.理由如下:
∵ADBC=BD,
∴∠B=∠BAD.
∵AD∥EG,
∴∠BAD=∠E,
∴∠B=∠E,
∴EG=BG,
由(2)知,GF=GC,
∴EG+FG=BG+CG=BC=2,
∴FG+EG是一個定值,為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,點是延長線上一點過點作的切線,切點為.過點作于點,延長交于點.連結(jié),,,.若,.
(1)求的長。
(2)求證:是的切線.
(3)試判斷四邊形的形狀,并求出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù),下列說法不正確的是( )
A. 函數(shù)圖象分別位于第一、第三象限
B. 當(dāng)x>0時,y隨x的增大而減小
C. 若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2
D. 函數(shù)圖象經(jīng)過點(1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以點A,D,E為頂點的三角形是等腰三角形,則m的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交軸、軸于點C、D,且S△PBD=4, .
(1)求點D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)時,一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com