【題目】如圖,在等腰直角三角形ABC中,DAB的中點(diǎn),E,F分別是ACBC.上的點(diǎn)(點(diǎn)E不與端點(diǎn)A,C重合),且連接EF并取EF的中點(diǎn)O,連接DO并延長(zhǎng)至點(diǎn)G,使,連接DE,DF,GE,GF

(1)求證:四邊形EDFG是正方形;

(2)直接寫(xiě)出當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最小?最小值是多少?

【答案】(1)詳見(jiàn)解析;(2)當(dāng)點(diǎn)E為線段AC的中點(diǎn)時(shí),四邊形EDFG的面積最小,該最小值為4

【解析】

1)連接CD,根據(jù)等腰直角三角形的性質(zhì)可得出∠A=DCF=45°、AD=CD,結(jié)合AE=CF可證出ADE≌△CDFSAS),根據(jù)全等三角形的性質(zhì)可得出DE=DF、ADE=CDF,通過(guò)角的計(jì)算可得出∠EDF=90°,再根據(jù)OEF的中點(diǎn)、GO=OD,即可得出GDEF,且GD=2OD=EF,由此即可證出四邊形EDFG是正方形;

2)過(guò)點(diǎn)DDE′ACE′,根據(jù)等腰直角三角形的性質(zhì)可得出DE′的長(zhǎng)度,從而得出2≤DE2,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.

(1)證明:連接CD,如圖1所示.

為等腰直角三角形,,

DAB的中點(diǎn),

,

,

,

,

為等腰直角三角形.

OEF的中點(diǎn),,

,且

∴四邊形EDFG是正方形;

(2):過(guò)點(diǎn)DE′,如圖2所示.

為等腰直角三角形,,

,點(diǎn)E′AC的中點(diǎn),

(點(diǎn)E與點(diǎn)E′重合時(shí)取等號(hào)).

∴當(dāng)點(diǎn)E為線段AC的中點(diǎn)時(shí),四邊形EDFG的面積最小,該最小值為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富同學(xué)們的課余生活,某學(xué)校舉行親近大自然戶(hù)外活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為你最想去的景點(diǎn)是?的問(wèn)卷調(diào)查,要求學(xué)生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)解答下列問(wèn)題:

1)本次調(diào)查的樣本容量是

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該學(xué)校共有3600名學(xué)生,試估計(jì)該校最想去濕地公園的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,于點(diǎn)點(diǎn),延長(zhǎng)使,連接

1)證明:四邊形是矩形;

2)當(dāng)時(shí),猜想線段、的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABAC,∠BAC110°,MP、NO分別垂直平分AB、AC.則∠PAO___________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,DE∥BC,交AB于點(diǎn)E,DF∥AB,交BC于點(diǎn)F,當(dāng)△ABC滿(mǎn)足_________條件時(shí),四邊形BEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°,CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=,CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,ABAC,點(diǎn)DBC邊上一點(diǎn)(不與點(diǎn)B、C重合),以AD為邊在AD的右側(cè)作ADE,使ADAE,∠DAE=∠BAC,連接CE,設(shè)∠BACα,∠BCEβ

1)線段BD、CE的數(shù)量關(guān)系是________;并說(shuō)明理由;

2)探究:當(dāng)點(diǎn)DBC邊上移動(dòng)時(shí),α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

3)如圖2,若∠BAC90°,CEBA的延長(zhǎng)線交于點(diǎn)F.求證:EFDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019423日是第24個(gè)世界讀書(shū)日.為了弘揚(yáng)中華傳統(tǒng)文化,我縣某學(xué)校舉辦了讓讀書(shū)成為習(xí)慣,讓書(shū)香飄滿(mǎn)校園主題活動(dòng),為此特為每個(gè)班級(jí)訂購(gòu)了一批新的圖書(shū).初一(1)班訂購(gòu)老舍文集4套和四大名著2套,總費(fèi)用為480元;初一(2)班訂購(gòu)老舍文集2套和四大名著3套,總費(fèi)用為520元.

(1)求老舍文集和四大名著每套各是多少元?

(2)學(xué)校準(zhǔn)備再購(gòu)買(mǎi)老舍文集和四大名著共20套,總費(fèi)用不超過(guò)1720元,購(gòu)買(mǎi)老舍文集的數(shù)量不超過(guò)四大名著的3倍,問(wèn)學(xué)校有幾種購(gòu)買(mǎi)方案,請(qǐng)你設(shè)計(jì)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,是用3根相同火柴棒拼成的一個(gè)三角圖形,記為一個(gè)基本圖形,將此基本圖形不斷的復(fù)制,使得相鄰的兩個(gè)基本圖形的邊重合,這樣得到圖②,圖③

1)觀察以上圖形,圖④中所用火柴棒的根數(shù)為_________,

猜想:在圖n中,所用火柴棒的根數(shù)為_________(用n表示);

2)如圖,將圖n放在直角坐標(biāo)系中,設(shè)其中第一個(gè)基本圖形的中心O1的坐標(biāo)為(,),則=_________;的坐標(biāo)為_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案