【題目】為了豐富同學們的課余生活,某學校舉行親近大自然戶外活動,現(xiàn)隨機抽取了部分學生進行主題為你最想去的景點是?的問卷調(diào)查,要求學生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)四個景點中選擇一項,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.

請解答下列問題:

1)本次調(diào)查的樣本容量是 ;

2)補全條形統(tǒng)計圖;

3)若該學校共有3600名學生,試估計該校最想去濕地公園的學生人數(shù).

【答案】(160;(2)作圖見解析;(31380

【解析】試題分析:(1)由A的人數(shù)及其人數(shù)占被調(diào)查人數(shù)的百分比可得;

2)根據(jù)各項目人數(shù)之和等于總數(shù)可得C選項的人數(shù);

3)用樣本中最想去濕地公園的學生人數(shù)占被調(diào)查人數(shù)的比例乘總?cè)藬?shù)即可.

試題解析:(1)本次調(diào)查的樣本容量是15÷25%=60;

2)選擇C的人數(shù)為:60﹣15﹣10﹣12=23(人),

補全條形圖如圖:

3×3600=1380(人).

答:估計該校最想去濕地公園的學生人數(shù)約由1380人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=-x(x3)0≤x≤3),記為C1,它與x軸交于點O,A1;

C1繞點A1旋轉(zhuǎn)180°C2,交x 軸于點A2;C2繞點A2旋轉(zhuǎn)180°C3,交x 軸于點A3;

……

如此進行下去,直至得C13

P1m)在C1上,則m =_________

P37,n)在第13段拋物線C13上,則n =_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理(解析)

提出問題:如圖1,在四邊形ABCD中,PAD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:

APAD(如圖2)

APAD,△ABP和△ABD的高相等,

SABPSABD,

PDADAPAD,△CDP和△CDA的高相等

SCDPSCDA,

SPBCS四邊形ABCDSABPSCDPS四邊形ABCDSABDSCDA,

S四邊形ABCD(S四邊形ABCDSDBC)(S四邊形ABCDSABC)SDBC+SABC.

(1)APAD時,探求SPBCSABCSDBC之間的關(guān)系式并證明;

(2)APAD時,SPBCSABCSDBC之間的關(guān)系式為:   ;

(3)一般地,當APAD(n表示正整數(shù))時,探求SPBCSABCSDBC之間的關(guān)系為:   

(4)APAD(01)時,SPBCSABCSDBC之間的關(guān)系式為:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MNPQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AC=4cm,BC=3cm,點P由B出發(fā)沿BA的方向向點A勻速運動,速度為1cm/s,同時點Q由A出發(fā)沿AC的方向向點C勻速運動,速度為2cm/s,連接PQ,設(shè)運動的時間為t(s),其中0<t<2,解答下列問題:

(1)當t為何值時,以P、Q、A為頂點的三角形與ABC相似?

(2)是否存在某一時刻t,線段PQ將ABC的面積分成1:2兩部分?若存在,求出此時的t,若不存在,請說明理由;

(3)點P、Q在運動的過程中,CPQ能否成為等腰三角形?若能,請求出此時t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】年冬季越野賽在濱河學校操場舉行,某運動員從起點學校東門出發(fā),途徑濕地公園,沿比賽路線跑回終點學校東門.沿該運動員離開起點的路程(千米)與跑步時間(時間)之間的函數(shù)關(guān)系如圖所示,其中從起點到濕地公園的平均速度是千米/分鐘,用時分鐘,根據(jù)圖像提供的信息,解答下列問題:

)求圖中的值;

)組委會在距離起點千米處設(shè)立一個拍攝點,該運動員從第一次過點到第二次過點所用的時間為分鐘.

①求所在直線的函數(shù)解析式;

②該運動員跑完全程用時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′

1)在給定方格紙中畫出平移后的△A′B′C′;

2)畫出AB邊上的中線CD

3)畫出BC邊上的高線AE

4)點為方格紙上的格點(異于點),若,則圖中的格點共有 個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE

1)求證:BE=CE

2)求BEC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,DAB的中點,E,F分別是ACBC.上的點(E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DFGE,GF

(1)求證:四邊形EDFG是正方形;

(2)直接寫出當點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?

查看答案和解析>>

同步練習冊答案