【題目】如圖,AB是⊙O的直徑,弦AD平分∠BAC,DEACAC的延長(zhǎng)線于點(diǎn)E.

(1)求證:DE是⊙O的切線;

(2)AD=BCO半徑為6,求∠CAD圍成的陰影部分的面積.

【答案】(1)直線DE與⊙O相切,理由見(jiàn)解析;(2)6

【解析】

(1)連接OD,由AD為角平分線,得到一對(duì)角相等,再由OA=OD,得到一對(duì)角相等,通過(guò)等量代換得到一對(duì)內(nèi)錯(cuò)角相等;根據(jù)上步結(jié)論可推理得到平行線,再結(jié)合AEED即可證得結(jié)論

(2)先判斷△COD是等邊三角形,根據(jù)等底同高的三角形的面積相等可知SACD=SCOD,從而∠CAD與弧CD圍成的陰影部分的面積=扇形COD的面積.

解:(1)直線DE與⊙O相切,

理由如下:連接OD,如圖所示:

AD平分∠BAC,

∴∠EAD=OAD,

OA=OD,

∴∠ODA=OAD,

∴∠ODA=EAD,

EAOD,

DEEA,

DEOD,

又∵點(diǎn)D在⊙O上,

∴直線DE與⊙O相切;

(2)連接CD,OC.

AD=BC,

AD =BC ,

AC = BD ,

CD = BD ,

AC = CD =BD,

∴∠COD=BOD=60°,

OC=OD,

∴△COD是等邊三角形,

∴∠CDO=DOB=60°,

CDAB,

SACD=SCOD,

∴∠CAD與弧CD圍成的陰影部分的面積=扇形COD的面積=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點(diǎn),∠CDE=∠A.

(1)如圖,若BC=BD,求證:CD=DE;

(2)如圖,過(guò)點(diǎn)CCH⊥DE,垂足為H,若CD=BD,EH=1,求DE﹣BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+2x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求點(diǎn)A的坐標(biāo)和k的值;

(2)求點(diǎn)C坐標(biāo);

(3)直線y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖1,若一個(gè)四邊形的兩條對(duì)角線互相垂直,則稱(chēng)這個(gè)四邊形為垂美四邊形.

1)概念理解:如圖2,在四邊形ABCD中,ABAD,CBCD,問(wèn)四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由;

2)性質(zhì)探究:如圖1,試在垂美四邊形ABCD中探究AB2,CD2,AD2,BC2之間的關(guān)系,并說(shuō)明理由;

3)解決問(wèn)題:如圖3,分別以RtABC的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)CE、BGGE、CEBG于點(diǎn)N,交AB于點(diǎn)M.已知AC,AB2,求GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的發(fā)展,油電混合動(dòng)力汽車(chē)已經(jīng)開(kāi)始普及,某種型號(hào)油電混合動(dòng)力汽車(chē),從甲地到乙地燃油行駛純?nèi)加唾M(fèi)用80元,從甲地到乙地用電行駛純電費(fèi)用30元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5

1)求每行駛1千米純用電的費(fèi)用;

2)若要使從甲地到乙地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過(guò)50元,則至多用純?nèi)加托旭偠嗌偾祝?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(2,1)是正比例函數(shù)ykx(其中k0)和反比例函數(shù)y(其中t0)的圖像在第一象限的交點(diǎn),點(diǎn)B是這兩個(gè)函數(shù)圖像的另一個(gè)交點(diǎn),點(diǎn)Cx軸上一點(diǎn).

1)求這兩個(gè)函數(shù)的解析式并直接寫(xiě)出點(diǎn)B的坐標(biāo);

2)求當(dāng)ABC為等腰三角形時(shí),點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,CBE為等腰三角形;再繼續(xù)將紙片沿CBE的對(duì)稱(chēng)軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱(chēng)這樣兩個(gè)矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫(huà)出折痕;

(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫(huà)出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且ABC折成的“疊加矩形”為正方形;

(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是   ;

(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,點(diǎn)從點(diǎn)出發(fā)沿射線移動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿線段的延長(zhǎng)線移動(dòng),點(diǎn)移動(dòng)的速度相同,相交于點(diǎn).

(1)如圖1,過(guò)點(diǎn),交于點(diǎn),求證:

(2)如圖2,,當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求的長(zhǎng)度;

(3)如圖3,過(guò)點(diǎn)于點(diǎn).在點(diǎn)從點(diǎn)向點(diǎn)(點(diǎn)不與點(diǎn),重合)移動(dòng)的過(guò)程中,線段的長(zhǎng)度是否保持不變?nèi)舯3植蛔儯?qǐng)求出的長(zhǎng)度和;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一工程,在工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).施工一天,需付甲工程隊(duì)工程款1.2萬(wàn)元,乙工程隊(duì)工程款0.5萬(wàn)元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊(duì)的投標(biāo)書(shū)測(cè)算,有如下方案:

1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;

2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊(duì)合作3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

試問(wèn):(1)規(guī)定日期是多少天?

(2)在不耽誤工期的前提下,你覺(jué)得哪一種施工方案最節(jié)省工程款?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案