【題目】如圖,在等腰三角形ABC中,AB=AC,點D為AC上一點,且AD=BD=BC,則等腰三角形ABC的頂角度數(shù)為__________________.
【答案】360
【解析】
由AB=AC,AD=BD=BC,根據(jù)等角對等邊的知識,可得∠A=∠ABD,∠C=∠ABC=∠CDB,設∠A=x°,根據(jù)等腰三角形的性質得出∠ABD=x°,∠C=∠ABC=∠CDB=2x°,然后根據(jù)三角形的內角和定理得出關于x的方程,解方程即可求得答案.
∵AB=AC,AD=BD=BC,
∴∠A=∠ABD,∠C=∠ABC=∠CDB,
設∠A=x°,則∠ABD=∠A=x°,
∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,
∵∠A+∠C+∠ABC=180°,
∴x+2x+2x=180,
解得x=36.
故等腰三角形ABC的頂角度數(shù)為36°.
故答案為:36°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA垂直于弦BC,垂足為E,點D在CA的延長線上,若∠DAB+
∠AOB=60°
(1)求∠AOB的度數(shù);
(2)若AE=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)如表回答下列問題:
x | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 | 16.9 | 17.0 |
x2 | 262.44 | 265.69 | 268.96 | 272.25 | 275.56 | 278.89 | 282.24 | 285.61 | 289 |
(1)275.56的平方根是______ ;
(2)= ______ ;
(3)查看上表, << .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】CD經過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經過∠BCA的內部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關于∠α與∠BCA關系的條件_____,使①中的兩個結論仍然成立。
(2)如圖3,若直線CD經過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關系的合理猜想并給出理由。.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF,若將△DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結論是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為( )
A.2.3
B.2.4
C.2.5
D.2.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(2 ,2)、B(2 ,1),將△AOB繞著點O逆時針旋轉,使點A旋轉到點A′(﹣2 ,2 )的位置,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=60°,△ABC的角平分線AD、CE相交于點O,
(1)求∠AOC的度數(shù);
(2)求證:OE=OD;
(3).猜測AE,CD,AC三者的數(shù)量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com