【題目】已知二次函數的圖象如圖所示,下列有個結論:①;②;③;④.請你將正確結論的番號都寫出來_______.
【答案】①②③
【解析】
根據拋物線的性質逐一判斷即可求解:①根據拋物線與x軸有兩個交點可得,據此判斷即可;②首先根據拋物線開口向上可得,然后根據拋物線對稱軸為直線可得,最后由拋物線與y軸的交點在x軸上方可得,所以,據此即可判定;③根據二次函數可得當時,,所以,據此判斷即可;④首先根據當時,,可得,所以,然后根據無法確定是否等于﹣1,也就無法確定是否等于1,據此判斷即可.
∵拋物線與x軸有兩個交點
∴,
∴結論①正確;
∵拋物線開口向上
∴,
∵拋物線對稱軸為直線
∴,
∵拋物線與y軸的交點在x軸上方
∴,
∴,
∴結論②正確;
當時,,
∴
∴,
∴結論③正確;
當時,,
∴,
∴,
∵無法確定是否等于﹣1,
∴也就無法確定是否等于1,
∴結論④不正確.
故答案為:①②③
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y= -x2+bx+c與x軸負半軸交于A點,與x軸正半軸交于B點,與y軸正半軸交于C點,CO=BO,AB=14.
(1)求拋物線的解析式;
(2)如圖2, 點M、N在第一象限內拋物線上,M在N點下方,連CM、CN,∠OCN+∠OCM=180°, 設M點橫坐標為m,N點橫坐標為n,求m與n的函數關系式(n是自變量);
(3)如圖3, 在(2)條件下,連AN交CO于E,過M作MF⊥AB于F,連BM、EF,若∠AFE=2∠FMB=2β, 求N點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,點A、點B在⊙O上,∠AOB=90°,OA=6,點C在OA上,且OC=2AC,點D是OB的中點,點M是劣弧AB上的動點,則CM+2DM的最小值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標;
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標平面內的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數的圖象和都在第一象限內,,軸,且,點的坐標為.
(1)若反比例函數的圖象經過點B,求此反比例函數的解析式;
(2)若將向下平移(m>0)個單位長度,,兩點的對應點同時落在反比例函數圖象上,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點O是對角線AC,BD的交點,點E在BC邊上(點E不和BC的端點重合),且BE=BC,連接AE交OB于點F,過點B作AE的垂線BG交OC于點G,連接GE.
(1)求證:OF=OG;
(2)用含的代數式表示tan∠OBG的值;
(3)如圖2,當∠GEC=90°時,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃購進A、B兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進價比A型的多40元,且用3000元購進的A型節(jié)能臺燈與用5000元購進的B型節(jié)能臺燈的數量相同.
(1)求每盞A型節(jié)能臺燈的進價是多少元?
(2)商場將購進A、B兩型節(jié)能臺燈100盞進行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進貨數量不超過A型節(jié)能臺燈數量的2倍.應怎樣進貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某教研機構為了了解初中生課外閱讀名著的現狀,隨機抽取了某校50名初中生進行調查,依據相關數據繪制成了以下不完整的統(tǒng)計圖,請根據圖中信息解答下列問題:
類別 | 重視 | 一般 | 不重視 |
人數 | a | 15 | b |
(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;
(3)若某校共有初中生2000名,請估計該校“重視課外閱讀名著”的初中生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D為BC的中點,點E在AB上,AD,CE交于點F,AE=EF=4,FC=9,則cos∠ACB的值為( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com