【題目】矩形ABCD中,E在A(yíng)D上,F(xiàn)在A(yíng)B上,EF⊥CE于E,DE=AF=2,矩形的周長(zhǎng)為24,則BF的長(zhǎng)為( 。
A. 3 B. 4 C. 5 D. 7
【答案】A
【解析】
先根據(jù)直角三角形的性質(zhì)證明得到∠AEF=∠DCE,然后利用“角角邊”證明△AEF和△DCE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=DC,再利用矩形的周長(zhǎng)求出CD的長(zhǎng)度,根據(jù)BF=AB-AF,代入數(shù)據(jù)計(jì)算即可得解.
∵EF⊥CE,
∴∠AEF+∠DEC=90°,
在矩形ABCD中,∠D=90°,
∴∠DCE+∠DEC=90°,
∴∠AEF=∠DCE,
在△AEF和△DCE中,
,
∴△AEF≌△DCE(AAS),
∴AE=DC,
∵矩形的周長(zhǎng)為24,
∴2(AE+DE+DC)=24,
即2(DC+2+DC)=24,
解得DC=5,
∴BF=ABAF=52=3.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若AB=10,AC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,直線(xiàn)BM⊥AB于點(diǎn)B,點(diǎn)C在⊙O上,分別連接BC,AC,且AC的延長(zhǎng)線(xiàn)交BM于點(diǎn)D,CF為⊙O的切線(xiàn)交BM于點(diǎn)F.
(1)求證:CF=DF;
(2)連接OF,若AB=10,BC=6,求線(xiàn)段OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)為延長(zhǎng)線(xiàn)上一點(diǎn)且,連接,在上截取,使,過(guò)點(diǎn)作平分,,分別交于點(diǎn)、.連接.
(1)若,求的長(zhǎng);
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定關(guān)于的二次函數(shù) ,
學(xué)生甲:當(dāng)時(shí),拋物線(xiàn)與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線(xiàn)與軸只有一個(gè)交點(diǎn)時(shí),的值為3;
學(xué)生乙:如果拋物線(xiàn)在軸上方,那么該拋物線(xiàn)的最低點(diǎn)一定在第二象限;
請(qǐng)判斷學(xué)生甲、乙的觀(guān)點(diǎn)是否正確,并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一組數(shù)據(jù),,,,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,,,的方差是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類(lèi)比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”.
(1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長(zhǎng);
(2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對(duì)角線(xiàn)互相垂直的“準(zhǔn)等邊四邊形”是菱形.請(qǐng)你判斷此結(jié)論是否正確,若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉出反例;
(3)如圖2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分線(xiàn)上是否存在點(diǎn)P,使得以A,B,C,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”. 若存在,請(qǐng)求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個(gè)小長(zhǎng)方形的邊長(zhǎng)為1,所求的圖形各頂點(diǎn)也在格點(diǎn)上.
(1)在圖1中畫(huà)一個(gè)以點(diǎn),為頂點(diǎn)的菱形(不是正方形),并求菱形周長(zhǎng);
(2)在圖2中畫(huà)一個(gè)以點(diǎn)為所畫(huà)的平行四邊形對(duì)角線(xiàn)交點(diǎn),且面積為6,求此平行四邊形周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com