【題目】拋物線y=ax2-4ax+4(a≠0)與y軸交于點(diǎn)A.過點(diǎn)B(0,3)作y軸的垂線l,若拋物線y=ax2-4ax+4(a≠0)與直線l有兩個(gè)交點(diǎn),設(shè)其中靠近y軸的交點(diǎn)的橫坐標(biāo)為m,且│m│<1,則a的取值范圍是______.
【答案】a>或a<.
【解析】
先確定拋物線的對(duì)稱軸,根據(jù)開口的大小與a的關(guān)系,即開口向上時(shí),a>0,且a越大開口越小,開口向下時(shí),a<0,且a越大,開口越大,從而確定a的范圍.
解:如圖,觀察圖形
拋物線y=ax2-4ax+4的對(duì)稱軸為直線 ,
設(shè)拋物線與直線l交點(diǎn)(靠近y軸)為(m,3),
∵│m│<1,
∴-1<m<1.
當(dāng)a>0時(shí),若拋物線經(jīng)過點(diǎn)(1,3)時(shí),開口最大,此時(shí)a值最小,
將點(diǎn)(1,3)代入y=ax2-4ax+4,
得,3=a-4a+4
解得a= ,
∴a>;
當(dāng)a<0時(shí),若拋物線經(jīng)過點(diǎn)(-1,3)時(shí),開口最大,此時(shí)a值最大,
將點(diǎn)(-1,3)代入y=ax2-4ax+4,
得,3=a+4a+4
解得a= ,
∴a<.
a的取值范圍是a>或a<.
故答案為:a>或a<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=BD=10,CD=4,AD=6.點(diǎn)P是線段BD上的動(dòng)點(diǎn),點(diǎn)E、Q分別是線段DA、BD上的點(diǎn),且DE=DQ=BP,聯(lián)結(jié)EP、EQ.
(1)求證:EQ∥DC;
(2)如果△EPQ是以EQ為腰的等腰三角形,求線段BP的長;
(3)當(dāng)BP=m(0<m<5)時(shí),求∠PEQ的正切值.(用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△AOB與△A1OB1是以點(diǎn)O為位似中心的位似圖形,且相似比為1:2,點(diǎn)B的坐標(biāo)為(-1,2),則點(diǎn)B1的坐標(biāo)為( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0),C(0,-3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)若P為線段BC上一點(diǎn),過點(diǎn)P作軸的平行線,交拋物線于點(diǎn)D,當(dāng)△BCD面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若M(m,0)是軸上一個(gè)動(dòng)點(diǎn),請(qǐng)求出CM+MB的最小值以及此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CD邊F處,連接AF,在AF上取一點(diǎn)O,以點(diǎn)O為圓心,OF為半徑作⊙O與AD相切于點(diǎn)P.AB=6,BC=
(1)求證:F是DC的中點(diǎn).
(2)求證:AE=4CE.
(3)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段AB上有一點(diǎn)C,在AB的同側(cè)作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直線BD與線段AE,線段CE分別交于點(diǎn)F,G.對(duì)于下列結(jié)論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,則2AD2=DF·DG.其中正確的是( )
A.①②③④B.①②③C.①③④D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作AB的垂線交AC的延長線于點(diǎn)F.
(1)求證:;
(2)過點(diǎn)C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過Rt△BOC斜邊上的中點(diǎn)A,與邊BC交于點(diǎn)D,連接AD,則△ADB的面積為( 。
A.12B.16C.20D.24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com