【題目】點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a-b|.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示1和3兩點之間的距離 .數(shù)軸上表示-12和-6的兩點之間的距離是 .
(2)數(shù)軸上表示x和-4的兩點之間的距離表示為 .
(3)|x-2|+|x+4|的最小值為 時,能使|x-2|+|x+4|取最小值的所有整數(shù)x的和是 .
(4)若數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是-1、3,現(xiàn)在點A、點B分別以2個單位長度/秒和0.5個單位長度/秒的速度同時向右運動,當點A與點B之間的距離為3個單位長度時,求點A所對應(yīng)的數(shù)是多少?
【答案】(1) 2,6; (2) |x+4|; (3) 6,-7;(4) 或8.
【解析】
(1)(2)在數(shù)軸上A、B兩點之間的距離為AB=|a-b|,依此即可求解;
(3)根據(jù)線段上的點到這兩點的距離最小,可得范圍;
(4)分兩種情況:點A在點B的左邊,點A在點B的右邊,進行討論即可求解.
(1)1和3兩點之間的距離3-1=2,數(shù)軸上表示-12和-6的兩點之間的距離是-6-(-12)=6;
故答案為:2,6;
(2)x與-4之間的距離表示為|x-(-4)|=|x+4|;
故答案為:|x+4|;
(3)當x≥2,原式=x-2+x+4=2x+2;最小值為2×2+2=6;
當-4<x<2,原式=2-x+x+4=6;
當x≤-4,原式=2-x-x-4=-2x-2,最小值為-2×(-4)-2=6;
∴|x-2|+|x+4|最小值為6;
∵要使代數(shù)式|x-2|+|x+4|取最小值時,相應(yīng)的x的取值范圍是-4≤x≤2,
∴能使|x-2|+|x+4|取最小值的所有整數(shù)x的值為:-4,-3,-2,-1,0,1,2,
它們的和為:-4-3-2-1+0+1+2=-7;
故答案為:6,-7;
(4)點A在點B的左邊,
(4-3)÷(2-0.5)×2+(-1)=.
點A所對應(yīng)的數(shù)是
點A在點B的右邊,
(4+3)÷(2-0.5)×2+(-1)=8.
點A所對應(yīng)的數(shù)是8.
故點A所對應(yīng)的數(shù)是或8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標準質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標準質(zhì)量10kg的用負數(shù)表示,結(jié)果記錄如下
與標準質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標及D點的坐標;
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最?若C點存在,求出C點的坐標;若C點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】讀句畫圖并完成計算:如圖,直線AB與直線CD交于點C ,
(1)過點P作PQ∥CD,交AB于點Q;
(2)過P作PR⊥CD于點R;
(3)若∠DCB=150,求∠PQC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數(shù)量正好是吊蘭數(shù)量的兩倍.
(1)分別求出每盆綠蘿和每盆吊蘭的價格;
(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數(shù)量不超過吊蘭數(shù)量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據(jù)該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣4,4),點B的坐標為(0,2).
(1)求直線AB的解析式;
(2)如圖,以點A為直角頂點作∠CAD=90°,射線AC交x軸于點C,射線AD交y軸于點D.當∠CAD繞著點A旋轉(zhuǎn),且點C在x軸的負半軸上,點D在y軸的負半軸上時,OC﹣OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張準備購買一套新房,他準備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)寫出用含x、y的代數(shù)式表示的地面總面積;
(2)若x=5,y=1.5,鋪設(shè)1m2地磚的平均費用為180元,則鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽光集團新進了20臺電視機和30臺電飯煲,計劃將這50臺電器調(diào)配給下屬的甲、乙兩個商店銷售,其中40臺給甲商店,10臺給乙商店.兩個商店銷售這兩種電器每臺的利潤(元)如下表:
電視機 | 電飯煲 | |
甲商店/元 | 100 | 60 |
乙商店/元 | 80 | 50 |
(1)設(shè)集團調(diào)配給甲商店x臺電視機,則調(diào)配給甲商店電飯煲 臺,調(diào)配給乙商店電視機 臺、電飯煲 臺;
(2)求出x的取值范圍;
(3)如果陽光集團賣出這50臺電器想要獲得的總利潤為3650元,請求出x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com