(10分)
如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(,)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)). 已知點(diǎn)坐標(biāo)為(,).
(1)求此拋物線的解析式;
(2)過點(diǎn)作線段的垂線交拋物線于點(diǎn), 如果以點(diǎn)為圓心的圓與直線相切,請判斷拋物線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;
(3)已知點(diǎn)是拋物線上的一個動點(diǎn),且位于,兩點(diǎn)之間,問:當(dāng)點(diǎn)
(1)
(2)略
(3)點(diǎn)的坐標(biāo)為(3,)
【解析】(1)解:設(shè)拋物線為.
∵拋物線經(jīng)過點(diǎn)(0,3),∴.∴.
∴拋物線為. ……………………………3分
(2) 答:與⊙相交. …………………………………………………………………4分
證明:當(dāng)時,,.
∴為(2,0),為(6,0).∴.
設(shè)⊙與相切于點(diǎn),連接,則.
∵,∴.
又∵,∴.∴∽.
∴.∴.∴.…………………………6分
∵拋物線的對稱軸為,∴點(diǎn)到的距離為2.
∴拋物線的對稱軸與⊙相交. ……………………………………………7分
(3) 解:如圖,過點(diǎn)作平行于軸的直線交于點(diǎn).
可求出的解析式為.………………………………………8分
設(shè)點(diǎn)的坐標(biāo)為(,),則點(diǎn)的坐標(biāo)為(,).
∴.
∵,
∴當(dāng)時,的面積最大為.
此時,點(diǎn)的坐標(biāo)為(3,). …………………………………………10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
8 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐 標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且sin ∠AOE=.
1.求該反比例函數(shù)和一次函數(shù)的解析式
2.求△AOC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年北京市豐臺區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,
與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐
標(biāo)為2,
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫出時x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆湖南省八年級反比例函數(shù)測試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐 標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且sin ∠AOE=.
1.求該反比例函數(shù)和一次函數(shù)的解析式
2.求△AOC的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com