分析 (1)根據(jù)題意首先化簡(jiǎn)二次根式,進(jìn)而得出答案;
(2)首先化簡(jiǎn)二次根式進(jìn)而得出關(guān)于n的等式求出答案.
解答 解:(1)原式=$\frac{\sqrt{2}}{\sqrt{2}}$-$\frac{1}{\sqrt{2}}$+$\frac{\sqrt{3}}{\sqrt{2}×\sqrt{3}}$-$\frac{\sqrt{2}}{\sqrt{3}×\sqrt{2}}$+…+$\frac{10}{\sqrt{99}×10}$-$\frac{\sqrt{99}}{\sqrt{99}×10}$
=1-$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{99}}$-$\frac{1}{10}$
=1-$\frac{1}{10}$
=$\frac{9}{10}$;
(2)∵$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}$+$\frac{\sqrt{n+2}-\sqrt{n+1}}{\sqrt{n+1}\sqrt{n+2}}$+$\frac{\sqrt{n+3}-\sqrt{n+2}}{\sqrt{n+2}\sqrt{n+3}}$=$\frac{1}{\sqrt{n+3}}$
∴$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$+$\frac{1}{\sqrt{n+1}}$-$\frac{1}{\sqrt{n+2}}$+$\frac{1}{\sqrt{n+2}}$-$\frac{1}{n+3}$=$\frac{1}{\sqrt{n+3}}$,
則$\frac{1}{\sqrt{n}}$=$\frac{2}{\sqrt{n+3}}$,
解得:n=1.
故答案為:1.
點(diǎn)評(píng) 此題主要考查了二次根式的混合運(yùn)算,正確化簡(jiǎn)二次根式是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com