3.把下列改寫成“如果…那么…”的形式,并寫出條件和結(jié)論.
(1)偶數(shù)是4的倍數(shù);
(2)對(duì)頂角相等.

分析 根據(jù)命題有題設(shè)和結(jié)論兩部分組成,則把條件寫在如果的后面,把結(jié)論寫在那么的后面即可.

解答 解:(1)偶數(shù)是4的倍數(shù)改寫成“如果…那么…”的形式為:如果一個(gè)數(shù)是偶數(shù),那么這個(gè)數(shù)是4的倍數(shù);
(2)對(duì)頂角相等改寫成“如果…那么…”的形式為如果兩個(gè)角是對(duì)頂角,那么這兩個(gè)角相等.

點(diǎn)評(píng) 本題考查了命題與定理:判斷事物的語(yǔ)句叫命題;正確的命題稱為真命題,錯(cuò)誤的命題稱為假命題;經(jīng)過(guò)推理論證的真命題稱為定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.閱讀學(xué)習(xí)
計(jì)算:$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$.
可以用下面的方法解決上面的問(wèn)題:
$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$
=($\frac{\sqrt{2}}{\sqrt{2}}$-$\frac{1}{\sqrt{2}}$)+($\frac{\sqrt{3}}{\sqrt{2}×\sqrt{3}}$-$\frac{\sqrt{2}}{\sqrt{2}×\sqrt{3}}$)+($\frac{2}{\sqrt{3}×2}$-$\frac{\sqrt{3}}{\sqrt{3}×2}$)+($\frac{\sqrt{5}}{2×\sqrt{5}}$-$\frac{2}{\sqrt{5}×2}$)
=(1-$\frac{1}{\sqrt{2}}$)+($\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$)+($\frac{1}{\sqrt{3}}$-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{\sqrt{5}}$)
=1-$\frac{1}{\sqrt{5}}$=1-$\frac{\sqrt{5}}{5}$
利用上面的方法解決問(wèn)題:
(1)計(jì)算$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$+…+$\frac{10-\sqrt{99}}{\sqrt{99}×10}$.
(2)當(dāng)n=1時(shí),等式$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}$+$\frac{\sqrt{n+2}-\sqrt{n+1}}{\sqrt{n+1}\sqrt{n+2}}$+$\frac{\sqrt{n+3}-\sqrt{n+2}}{\sqrt{n+2}\sqrt{n+3}}$=$\frac{1}{\sqrt{n+3}}$成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.化簡(jiǎn)$\frac{6}{\sqrt{5}}$-$\sqrt{\frac{1}{5}}$的結(jié)果是$\sqrt{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一個(gè)圓錐的主視圖和左視圖是兩個(gè)全等正三角形,則這個(gè)圓錐的側(cè)面展開(kāi)圖的圓心角等于(  )
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知:直線AB與CD相交于點(diǎn)O.
(Ⅰ)如圖1,若∠AOM=90°,OC平分∠AOM,則∠AOD=135°.
(Ⅱ)如圖2,若∠AOM=90°,∠BOC=4∠BON,OM平分∠CON,求∠MON的大小;
(Ⅲ)如圖3,若∠AOM=α,∠BOC=4∠BON,OM平分∠CON,求∠MON的大。ㄓ煤恋氖阶颖硎荆

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.小亮早晨從家騎車到學(xué)校,先上坡后下坡,所行路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖所示,若返回時(shí)上坡、下坡的速度仍與去時(shí)上、下坡的速度分別相同,則小明從學(xué)校騎車回家用的時(shí)間是63$\frac{4}{7}$分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.有10個(gè)邊長(zhǎng)為1的正方形,排列形式如下左圖.請(qǐng)?jiān)谧髨D中把它們分割,使之拼接成一個(gè)大正方形,并把分割后的圖形畫在右圖的正方形網(wǎng)格中.(正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格頂點(diǎn)為格點(diǎn),要求以格點(diǎn)為頂點(diǎn)畫大正方形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在式子:2x-y=3中,把它改寫成用含x的代數(shù)式表示y,正確的是( 。
A.y=2x+3B.y=2x-3C.x=$\frac{3-y}{2}$D.x=$\frac{3+y}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若直線上有5個(gè)點(diǎn),我們進(jìn)行第一次操作:在每相鄰兩點(diǎn)間插入1個(gè)點(diǎn),則直線上有9個(gè)點(diǎn);第二次操作:在9個(gè)點(diǎn)中的每相鄰兩點(diǎn)間繼續(xù)插入1個(gè)點(diǎn),則直線上有17個(gè)點(diǎn).現(xiàn)在直線上有n個(gè)點(diǎn),經(jīng)過(guò)3次這樣的操作后,直線上共有8n-7個(gè)點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案