【題目】早上,甲、乙、丙三人在同一條路上不同起點朝同方向以不同的速度勻速跑:點分時,乙在中間,丙在前,甲在后,且乙與甲、丙的距離相等:點時,甲追上乙;點分時,甲追上丙;當乙追上丙時,若從點分起計時,丙跑的時間為___________分鐘.
科目:初中數學 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現的結果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為傳播“綠色出行,低碳生活”的理念,小賈同學的爸爸從家里出發(fā),騎自行車去圖書館看書,圖1表達的是小賈的爸爸行駛的路程(米)與行駛時間(分鐘)的變化關系
(1)求線段BC所表達的函數關系式;
(2)如果小賈與爸爸同時從家里出發(fā),小賈始終以速度120米/分鐘行駛,當小賈與爸爸相距100米是,求小賈的行駛時間;
(3)如果小賈的行駛速度是米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學有一塊四邊形的空地ABCD,如圖所示,經測量∠A=90°,AB=6m,BC=24m,CD=26m,DA=8m.
(1)求四邊形ABCD的面積;
(2)學校計劃在空地上種植草皮,若每平方米草皮需要200元,問學校需要投入多少資金買草皮
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2013年浙江義烏12分)如圖1,已知(x>)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q,連結AQ,取AQ的中點為C.
(1)如圖2,連結BP,求△PAB的面積;
(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為,求此時P點的坐標;
(3)當點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富老年人的晚年生活,甲、乙兩單位準備組織退休職工到某風景區(qū)游玩.甲、乙兩單位退休職工共人,其中乙單位人數少于人,且甲單位人數不夠人.經了解,該風景區(qū)的門票價格如下表:
數量(張) | 張及以上 | ||
單價(元/張) |
如果兩單位分別單獨購買門票,一共應付元.
(1)甲、乙兩單位各有多少名退休職工準備參加游玩?
(2)如果甲單位有名退休職工因身體原因不能外出游玩,那么你有幾種購買方案,通過比較,你該如何購買門票才能最省錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數量是第一次的2倍,但單價貴了10元.
(1)求該商家第一次購進機器人多少個?
(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機器人的標價至少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結論有( )個
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com