【題目】如圖1所示,在正方形ABCD中,AB=1, 是以點(diǎn)B為圓心,AB長為半徑的圓的一段弧,點(diǎn)E是邊AD上的動點(diǎn)(點(diǎn)E與點(diǎn)A,D不重合),過E作 所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn).
(1)求證:EA=EG;
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)如圖2所示,將△DEF沿直線EF翻折后得△D1EF,連接AD1 , D1D,試探索:當(dāng)點(diǎn)E運(yùn)動到何處時,△AD1D與△ED1F相似?請說明理由.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴∠BAD=∠D=90°,AD=CD=AB=1,

∴AD⊥BA,

∴AD是圓B的切線,

∵EG是圓B的切線,

∴EA=EG


(2)解:∵EF切圓B于點(diǎn)G,

∴EA=EG,F(xiàn)C=FG.

∵AE=x,F(xiàn)C=y

∴EF=x+y,DE=1﹣x,DF=1﹣y,

在Rt△DEF中,根據(jù)勾股定理,得:(x+y)2=(1﹣x)2+(1﹣y)2

∴y= (0<x<1)


(3)解:當(dāng)點(diǎn)E運(yùn)動到AD的中點(diǎn)時,△AD1D與△ED1F相似;理由如下:

設(shè)直線EF交線段DD1于點(diǎn)H,由題意,得:

△EDF≌△ED1F,EF⊥DD1且DH=D1H.

∵AE= ,AD=1,

∴AE=ED.

∴EH∥AD1,∠AD1D=∠EHD=90°.

又∵∠ED1F=∠EDF=90°,

∴∠FD1D=∠AD1D.

∴D1F∥AD,

∴∠ADD1=∠DD1F=∠EFD=45°,

∴△ED1F∽△AD1D.


【解析】(1)證出AD是圓B的切線,由切線長定理即可得出結(jié)論;(2)根據(jù)切線長定理、正方形的性質(zhì)得到有關(guān)的線段用x,y表示,再根據(jù)勾股定理建立函數(shù)關(guān)系式.(3)根據(jù)切線長定理找到角之間的關(guān)系,從而發(fā)現(xiàn)正方形,根據(jù)正方形的性質(zhì)得到兩個角對應(yīng)相等,從而證明三角形相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)環(huán)保意識,某社區(qū)計劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查了多少個家庭?
(2)將圖①中的條形圖補(bǔ)充完整,直接寫出用車時間的中位數(shù)落在哪個時間段內(nèi);
(3)求用車時間在1~1.5小時的部分對應(yīng)的扇形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有1600個,請你估計該社區(qū)用車時間不超過1.5小時的約有多少個家庭?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠A=90°,AC=AB=4, D,E分別是AB,AC的中點(diǎn).若等腰Rt△ADE繞點(diǎn)A逆時針旋轉(zhuǎn),得到等腰Rt△AD1E1 , 設(shè)旋轉(zhuǎn)角為α(0<α≤180°),記直線BD1與CE1的交點(diǎn)為P.

(1)如圖1,當(dāng)α=90°時,線段BD1的長等于 , 線段CE1的長等于;(直接填寫結(jié)果)
(2)如圖2,當(dāng)α=135°時,求證:BD1= CE1 , 且BD1⊥CE1;
(3)①設(shè)BC的中點(diǎn)為M,則線段PM的長為;②點(diǎn)P到AB所在直線的距離的最大值為 . (直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB和線段CD重合部分CB的長是線段AB的三分之一,M、N分別是線段AB和線段CD的中點(diǎn),若,則線段AD的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B.
(1)請你在圖中把圖補(bǔ)畫完整;
(2)求C′B的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,∠ABC的角平分線BE將邊AD分成長度為5cm6cm的兩部分,則平行四邊形ABCD的周長為__________________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機(jī)伴我健康行主題活動.他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________。

2)補(bǔ)全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好食堂的服務(wù)工作,某學(xué)校食堂對學(xué)生最喜愛的菜肴進(jìn)行了抽樣調(diào)查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計圖(不完整):

(1)參加抽樣調(diào)查的學(xué)生數(shù)是______人,扇形統(tǒng)計圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計圖補(bǔ)充完整;

(3)若全校有3000名學(xué)生,請你根據(jù)以上數(shù)據(jù)估計最喜愛“烤腸”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】諸暨某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接五一國際勞動節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴(kuò)大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.

設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;x的代數(shù)式表示

每件童裝降價多少元時,平均每天贏利1200元.

要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案