【題目】如圖,在梯形ABCD中,DC//AB,∠A=90°,AD=6cm,DC=4cm,BC的坡度i=3:4,動點P從A出發(fā)以2cm/s的速度沿AB方向向點B運動,動點Q從點B出發(fā)以3厘cm/s的速度沿B→C→D方向向點D運動,兩個動點同時出發(fā),當其中一個動點到達終點時,另一個動點也隨之停止.設(shè)動點運動的時間為t秒.
(1)求邊BC的長;
(2)當t為何值時,PC與BQ相互平分;
(3)連結(jié)PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時,y有最大值?最大值是多少?
【答案】(1)BC=10;(2)秒時;PC與BQ相互平分;(3),當時,有最大值,為厘米2.
【解析】
(1)作CE⊥AB于E,根據(jù)坡度的定義進行求解;
(2)要使PC與BQ相互平分,只需保證四邊形CPBQ是平行四邊形,即可得到關(guān)于t的方程,進行求解;
(3)此題要分兩種情況考慮:點Q在BC上,即時;當點Q在CD上,即根據(jù)三角形的面積公式建立函數(shù)關(guān)系式,再進一步求解.
解:(1)作CE⊥AB于E,則四邊形ADCE是矩形,
則CE=AD=6.
又BC的坡度i=CE:BE=3:4,且BE⊥CE,
則CE:BC=3:5,
則BC=10;
(2)要使PC與BQ相互平分,只需保證四邊形CPBQ是平行四邊形,即PB=CQ.
由(1),得AB=4+8=12,則PB=122t.
則122t=3t10,
t=4.4.
(3)當時,則BP=122t,
當t=3時,y最大,是16.2;
當時,則
則t=時,y取得最大值,是16.
綜上所述,則當t=3時,y取得最大值,是16.2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(2,0)、B(3,1)、C(1,3).
(1)將△ABC沿x軸負方向移動2個單位長度至△A1B1C1,畫圖并寫出點C1的坐標;
(2)以點A1為旋轉(zhuǎn)中心,將△A1B1C1逆時針方向旋轉(zhuǎn)90°得到△A2B2C2,畫圖并寫出點C2的坐標;
(3)以B、C1、C2為頂點的三角形是 三角形,其外接圓的半徑R= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)某海域有A,B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論中:
①abc<0;②b2﹣4ac>0;③3a+c<0;④(a+c)2<b2,⑤a+b+c>0
其中正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點,且AE=CF,當BF+CE取得最小值時,∠AFB=( )
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2和圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4和圍成的弓形面積記為S3;…按此做法進行下去,其中S2018的面積為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com