【題目】計(jì)算(或化簡(jiǎn))下列各題

1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4

2)﹣42÷(﹣23+|﹣|×(﹣8

3)(﹣36)×(

4)(﹣32﹣[(﹣)+(﹣)]÷

52m1)﹣(2m3

6)(5ab+3a2)﹣2a2+2ab

7)先化簡(jiǎn),再求值:x2xy)+(﹣x+y),其中x=﹣2y

【答案】(1)2 (2) (3)18 (4)20 (5)1 (6) (7);

【解析】

1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;

2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;

3)原式利用乘法分配律計(jì)算即可得到結(jié)果;

4)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;

5)先去括號(hào),再合并同類項(xiàng)即可得到結(jié)果;

6)先去括號(hào),再合并同類項(xiàng)即可得到結(jié)果;

7)先去括號(hào),再合并同類項(xiàng),并將x的值代入即可得到結(jié)果;

1)(+4.3)﹣(﹣4+(﹣2.3)﹣(+4),

4.3+42.34

2;

2)﹣42÷(﹣23+|(﹣8),

=﹣16÷(﹣8+×(﹣8

2

;

3)(﹣36×),

=﹣36×+36×+36×,

=﹣45+30+33

18;

4)(﹣32[(﹣+(﹣

9﹣(﹣×12,

912×+12×

9+8+3,

20;

52m1)﹣(2m3

2m22m+3

1;

6)(5ab+3a2)﹣2a2+2ab

5ab+3a22a24ab

ab+a2

7x2xy+(﹣x+y

x2x+yx+y

=﹣3x+y,

當(dāng)x=﹣2,y時(shí),原式=﹣(﹣2+6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為(),點(diǎn)軸正半軸上的一動(dòng)點(diǎn),以為邊作等腰直角,使,設(shè)點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,能表示的函數(shù)關(guān)系的圖象大致是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題發(fā)現(xiàn)】

(1)如圖(1),四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為__________;

【拓展探究】

(2)如圖(2),在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;

【解決問題】

(3)如圖(3),在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫出BD'平方的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)二次函數(shù)的圖象經(jīng)過A(0,﹣6)、B(4,﹣6)、C(6,0)三點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)分別聯(lián)結(jié)AC、BC,求tanACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市區(qū)自20141月起,居民生活用水開始實(shí)行階梯式計(jì)量水價(jià),該階梯式計(jì)量水價(jià)分為三級(jí)(如下表所示):

月用水量(噸)

水價(jià)(元/噸)

第一級(jí) 20噸以下(含20噸)

16

第二級(jí) 20﹣30噸(含30噸)

24

第三級(jí) 30噸以上

32

例:某用戶的月用水量為32噸,按三級(jí)計(jì)量應(yīng)繳水費(fèi)為:

16×2024×1032×2624(元)

1)如果甲用戶的月用水量為12噸,則甲需繳的水費(fèi)為 元;

2)如果乙用戶繳的水費(fèi)為392元,則乙月用水量 噸;

3)如果丙用戶的月用水量為a噸,則丙用戶該月應(yīng)繳水費(fèi)多少元?(用含a的代數(shù)式表示,并化簡(jiǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。

1若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:

2若OA=2.0C=4.問當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OBOC

(1)如圖1,若點(diǎn)O在邊BC上,求證:ABAC;

(2)如圖2,若點(diǎn)O在△ABC的內(nèi)部,求證:ABAC;

(3)若點(diǎn)O在△ABC的外部,ABAC成立嗎?請(qǐng)畫出圖表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案