【題目】已知點(diǎn)P為EAF平分線上一點(diǎn),PBAE于B,PCAF于C,點(diǎn)M,N分別是射線AE,AF上的點(diǎn),且PM=PN.

(1)如圖1,當(dāng)點(diǎn)M在線段AB上,點(diǎn)N在線段AC的延長(zhǎng)線上時(shí),求證:BM=CN;

(2)在(1)的條件下,直接寫(xiě)出線段AM,AN與AC之間的數(shù)量關(guān)系 ;

(3)如圖2,當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上,點(diǎn)N在線段AC上時(shí),若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.

【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、AM+AN=2AC;(3)、32

【解析】

試題分析:(1)、根據(jù)PB=PC,PBM=PCN=90°,利用HL判定RtPBMRtPCN,即可得出BM=CN;

(2)、先已知條件得出AP平分CPB,再根據(jù)PBAB,PCAC,得到AB=AC,最后根據(jù)BM=CN,得出AM+AN=(ABMB)+(CN+AC)=AB+AC=2AC;(3)、由AC:PC=2:1,PC=4,即可求得AC的長(zhǎng),又由S四邊形ANPM=SAPN+SAPB+SPBM=SAPN+SAPB+SPCN=SAPC+SAPB,即可求得四邊形ANPM的面積.

試題解析:(1)、如圖1,點(diǎn)P為EAF平分線上一點(diǎn),PBAE,PCAF,

PB=PC,PBM=PCN=90°, 在RtPBM和RtPCN中,PBM=PCN=90°

, RtPBMRtPCN(HL), BM=CN;

(2)、AM+AN=2AC. ∵∠APB=90°﹣∠PAB,APC=90°﹣∠PAC,點(diǎn)P為EAF平分線上一點(diǎn),

∴∠APC=APB,即AP平分CPB, PBAB,PCAC, AB=AC, BM=CN,

AM+AN=(ABMB)+(CN+AC)=AB+AC=2AC;

(3)、如圖2,點(diǎn)P為EAF平分線上一點(diǎn),PBAE,PCAF, PB=PC,PBM=PCN=90°,

在RtPBM和RtPCN中,PBM=PCN=90°, , RtPBMRtPCN(HL),

BM=CN, SPBM=SPCN AC:PC=2:1,PC=4, AC=8,

由(2)可得,AB=AC=8,PB=PC=4, S四邊形ANPM=SAPN+SAPB+SPBM =SAPN+SAPB+SPCN

=SAPC+SAPB =ACPC+ABPB=×8×4+×8×4=32.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰RtABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過(guò)點(diǎn)CCEAD于點(diǎn)E.

(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長(zhǎng);

(2)如圖2,過(guò)點(diǎn)CCFCE,且CF=CE,連接BF,

求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了預(yù)測(cè)九年級(jí)男生“排球30秒”對(duì)墻墊球的情況,從本校九年級(jí)隨機(jī)抽取了n名男生進(jìn)行該項(xiàng)目測(cè)試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個(gè)組(每組含最小值,不含最大值).根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題:

(1)求n的值.
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第組.
(3)若測(cè)試九年級(jí)男生“排球30秒”對(duì)墻墊球個(gè)數(shù)不低于10個(gè)為合格,根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校九年級(jí)450名男同學(xué)成績(jī)合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、C、B、D在同一條直線上,ACBD,AMCN,BMDN

求證:(1)ABM CDN; (2)AMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,直線l經(jīng)過(guò)A(4,0)和B(0,4)兩點(diǎn),拋物線y=a(x﹣h)2的頂點(diǎn)為P(1,0),直線l與拋物線的交點(diǎn)為M.

(1)求直線l的函數(shù)解析式;
(2)若SAMP=3,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣2mx+m2﹣9.

(1)求證:無(wú)論m為何值,該拋物線與x軸總有兩個(gè)交點(diǎn);
(2)該拋物線與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),且OA<OB,與y軸的交點(diǎn)坐標(biāo)為(0,﹣5),求此拋物線的解析式;
(3)在(2)的條件下,拋物線的對(duì)稱軸與x軸的交點(diǎn)為N,若點(diǎn)M是線段AN上的任意一點(diǎn),過(guò)點(diǎn)M作直線MC⊥x軸,交拋物線于點(diǎn)C,記點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為D,點(diǎn)P是線段MC上一點(diǎn),且滿足MP= MC,連結(jié)CD,PD,作PE⊥PD交x軸于點(diǎn)E,問(wèn)是否存在這樣的點(diǎn)E,使得PE=PD?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次高爾夫球比賽中,小明從山坡下O點(diǎn)打出一球向球洞A點(diǎn)飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當(dāng)球達(dá)到最大高度10m時(shí),球移動(dòng)的水平距離為8m.已知山坡OA與水平方向OC的夾角為30°,OC=12m.

(1)求點(diǎn)A的坐標(biāo);
(2)求球的飛行路線所在拋物線的解析式;
(3)判斷小明這一桿能否把高爾夫球從O點(diǎn)直接打入球洞A點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)營(yíng)兒童玩具,已知成批購(gòu)進(jìn)時(shí)的單價(jià)是20元.調(diào)查發(fā)現(xiàn):銷(xiāo)售單價(jià)是30元時(shí),月銷(xiāo)售量是200件,而銷(xiāo)售單價(jià)每上漲2元,月銷(xiāo)售量就減少10件,但每件玩具售價(jià)不能高于40元.設(shè)每件玩具的銷(xiāo)售單價(jià)上漲了x元時(shí),月銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍.
(2)每件玩具的售價(jià)定為多少元時(shí),月銷(xiāo)售利潤(rùn)恰為2280元?
(3)每件玩具的售價(jià)定為多少元時(shí),月銷(xiāo)售利潤(rùn)達(dá)到最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題

(1)如圖:已知∠AOB和線段CD,求作一點(diǎn)P,使PC=PD,并且點(diǎn)P到∠AOB的兩邊距離相等(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡,寫(xiě)出結(jié)論);

(2)如圖:在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

①在圖中畫(huà)出與關(guān)于直線成軸對(duì)稱的△A′B′C′;

②線段CC′被直線_________;

③△ABC的面積為_________;

④在直線上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案