【題目】如圖,直線AB,CD與EF相交.
(1)圖中∠1和∠2分別在直線AB,CD的同_______,并且都在直線EF的_____,具有這樣位置關(guān)系的一對角叫做______;
(2)圖中∠2和∠8都在直線AB,CD____,并且分別在直線EF的___,具有這樣位置關(guān)系的一對角叫做_____;
(3)圖中∠2和∠7都在直線AB,CD____,且都在直線EF的____,具有這樣位置關(guān)系的一對角叫做______.
【答案】(1) 同一方(或上方),同側(cè)(或右側(cè)),同位角;(2)之間,兩側(cè),內(nèi)錯角;(3)之間,同一旁(或右側(cè)),同旁內(nèi)角.
【解析】
(1)根據(jù)同位角的定義進(jìn)行解答即可。
(2)根據(jù)內(nèi)錯角的定義進(jìn)行解答即可。
(3)根據(jù)同旁內(nèi)角的定義進(jìn)行解答即可。
(1)同位角:兩條直線被第三條直線所截,在截線的同旁,被截兩直線的同一側(cè)的角,我們把這樣的兩個角稱為同位角。
(2)內(nèi)錯角:兩條直線被第三條直線所截,兩個角分別在截線的兩側(cè),且夾在兩條被截直線之間,具有這樣位置關(guān)系的一對角叫做內(nèi)錯角。
(3)同旁內(nèi)角:兩條直線被第三條直線所截,在截線同旁,且在被截線之內(nèi)的兩角,叫做同旁內(nèi)角。同旁內(nèi)角,“同旁”指在第三條直線的同側(cè);“內(nèi)”指在被截兩條直線之間
故答案為:(1) 同一方(或上方),同側(cè)(或右側(cè)),同位角;(2)之間,兩側(cè),內(nèi)錯角;(3)之間,同一旁(或右側(cè)),同旁內(nèi)角.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),一組互相平行的直線共有n條(n≥2,且n為正整數(shù)),它們和兩條平行線a,b相交,構(gòu)成若干個“#”字形. 設(shè)構(gòu)成的“#”字形的個數(shù)為x,請找出規(guī)律,并填寫下表.
n | 2 | 3 | 4 | 5 | … | n |
x | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(a,0),B(b,0),且+| b-6|=0.
(1)求A,B的坐標(biāo);
(2)如圖2,點P為AB的垂直平分線上一點,BD⊥AP于點D,BE是△PBD的角平分線,EH⊥AB于點H,交BD于點G,若AD=m,DE=n,求△BEG的面積(用含m,n的式子表示);
(3)如圖3,點M在AB的垂直平分線上,且∠MAB=40°,點N在MA的延長線上,且MN=8,求∠ABN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建國家文明城市,我市特在每個紅綠燈處設(shè)置了文明監(jiān)督崗,文明勸導(dǎo)員老牛某工作日在市中心的一個十字路口,對闖紅燈的人數(shù)進(jìn)行統(tǒng)計.根據(jù)上午7:00~12:00中各時間段闖紅燈的人數(shù)制作了如圖所示的尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答下列問題:
(1)該工作日7:00~12:00共有人闖紅燈?
(2)①補(bǔ)全條形統(tǒng)計圖, ②計算扇形統(tǒng)計圖中10~11點所對應(yīng)的圓心角的度數(shù).
(3)該工作日7:00~12:00,各時間段闖紅燈的人數(shù)的方差是
(4)請你根據(jù)統(tǒng)計圖提供的信息向交通管理部門提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在正方形網(wǎng)格中的位置如圖所示,則點P是△ABC的( )
A.外心
B.內(nèi)心
C.三條高線的交點
D.三條中線的交點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是CD上一點,DF⊥BE交BE的延長線于點G,交BC的延長線于點F.
(1)求證:△BCE≌△DCF.
(2)若∠DBE=∠CBE,求證:BD=BF.
(3)在(2)的條件下,求CE:ED的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com