【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE內(nèi)部時,則∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變.請試著找一找這個規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)
【答案】B
【解析】解:2∠A=∠1+∠2, 理由:∵在四邊形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,
則2∠A+180°﹣∠2+180°﹣∠1=360°,
∴可得2∠A=∠1+∠2.
故選:B.
【考點精析】關(guān)于本題考查的三角形的內(nèi)角和外角和翻折變換(折疊問題),需要了解三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)家在實驗中檢測出某微生物約為0.0000025米,將0.0000025用科學(xué)記數(shù)法表示為( )
A.2.5×10﹣6
B.2.5×106
C.2.5×10﹣5
D.25×10﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過點A(﹣1,4),B(1,0),經(jīng)過點B,且與二次函數(shù)交于點D.
(1)求二次函數(shù)的表達式;
(2)點N是二次函數(shù)圖象上一點(點N在BD上方),過N作NP⊥x軸,垂足為點P,交BD于點M,求MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰和底的長分別是一元二次方程x2﹣4x+3=0的根,則該三角形的周長可以是( )
A.5
B.7
C.5或7
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)了一種新產(chǎn)品,現(xiàn)要在甲地或者乙地進行銷售,設(shè)年銷售量為x(件),其中x>0.
若在甲地銷售,每件售價y(元)與x之間的函數(shù)關(guān)系式為y=,每件成本為20元,設(shè)此時的年銷售利潤為w甲(元)(利潤=銷售額-成本);
若在乙地銷售,受各種不確定因素的影響,每件成本為a元(a為常數(shù),15≤a≤25 ),每件售價為106元,銷售x(件)每年還需繳納元的附加費,設(shè)此時的年銷售利潤為w乙(元)(利潤=銷售額-成本-附加費);
(1)當(dāng)a=16時且x=100時,w乙= 元;
(2)求w甲與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求x為何值時,w甲最大以及最大值是多少?
(3)為完成x件的年銷售任務(wù),請你通過分析幫助公司決策,應(yīng)選擇在甲地還是在乙地銷售才能使該公司所獲年利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com