【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,且AC=BD,E、F分別相交是AB、CD的中點(diǎn),EF分別交BD、AC于點(diǎn)G、H。求證:OG=OH。
【答案】證明見解析.
【解析】試題分析::取BC邊的中點(diǎn)M,連接EM,FM,則根據(jù)三角形的中位線定理,即可證得△EMF是等腰三角形,根據(jù)等邊對等角,即可證得∠MEF=∠MFE,然后根據(jù)平行線的性質(zhì)證得∠OGH=∠OHG,根據(jù)等角對等邊即可證得.
試題解析:∵M(jìn)、F分別是BC、CD的中點(diǎn),
∴MF∥BD,MF=BD,
同理:ME∥AC,ME=AC,
∵AC=BD
∴ME=MF
∴∠MEF=∠MFE,
∵M(jìn)F∥BD,
∴∠MFE=∠OGH,
同理,∠MEF=∠OHG,
∴∠OGH=∠OHG
∴OG=OH.
考點(diǎn): 三角形中位線定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,底邊BC為2 ,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為( )
A.2+2
B.2+
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、并三位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試各項(xiàng)成績?nèi)缦?/span>單位:分
同學(xué) 成績 | 數(shù)與代數(shù) | 圖形與幾何 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 |
甲 | 90 | 93 | 89 | 90 |
乙 | 94 | 92 | 94 | 86 |
丙 | 92 | 91 | 90 | 88 |
甲、乙、丙三位同學(xué)成績的中位數(shù)分別為______;
如果數(shù)與代數(shù)、圖形與幾何、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績按3:3:2:2計(jì)算,分別計(jì)算甲、乙、丙三位同學(xué)的數(shù)學(xué)綜合素質(zhì)測試成績,從成績看,應(yīng)推薦誰參加更高級(jí)別的比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點(diǎn),且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )
A.CE= DE
B.CE= DE
C.CE=3DE
D.CE=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0;
(2)先化簡,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是某型號(hào)跑步機(jī)的實(shí)物圖和示意圖,已知踏板CD長為2米,支架AC長為0.8米,CD與地面的夾角為12°,∠ACD=80°,(AB‖ED),求手柄的一端A離地的高度h.(精確到0.1米,參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com