【題目】數軸上有A、B兩點,A在B的左側,已知點B對應的數為2,點A對應的數為a.
(1)若a=﹣3,則線段AB的長為 (直接寫出結果);
(2)若點C在線段AB之間,且AC﹣BC=2,求點C表示的數(用含a的式子表示);
(3)在(2)的條件下,點D是數軸上A點左側一點,當AC=2AD,BD=4BC,求a的值.
【答案】(1)5;(2)2+;(3) a=﹣4.
【解析】
試題分析:(1)根據兩點間的距離求解;
(2)設C點對應的數為x,則AC=x﹣a,BC=2﹣x,根據AC﹣BC=2列出關于x的方程并求解;
(3)根據題意得到AC=x﹣a=2+﹣a,AD=AC=1﹣,結合(2)的已知條件AC﹣BC=2和圖示中的BD=AB+AD列出關于a的方程﹣2a=2﹣a+1﹣,并解方程.
解:(1)若a=﹣3時,則點A對應的數是﹣3,所以AB=2﹣(﹣3)=5,即線段AB的長度為5;
故答案是:5;
(2)設C點對應的數為x,則AC=x﹣a,BC=2﹣x,
∵AC﹣BC=2,即(x﹣a)﹣(2﹣x)=2,
解得x=2+,即點C表示的數為2+;
(3)依題意AC=x﹣a=2+﹣a=2﹣,
AD=AC=(2﹣)=1﹣,
∵AB=2﹣a,
又BD=AB+AD,即﹣2a=2﹣a+1﹣,
解得 a=﹣4.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
(1)求∠ECD的度數;
(2)若CE=5,求BC長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列運算正確的是( )
A. (﹣3)+(﹣4)=3+(﹣4)= ﹣1
B. (﹣3)+(﹣4)=﹣3+4=1
C. (﹣3)﹣(﹣4)=﹣3+4=1
D. (﹣3)﹣(﹣4)=﹣3﹣4=﹣7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是△ABC的兩外角平分線的交點,下列結論:①OB=OC;②點O到AB、AC的距離相等;③點O到△ABC的三邊的距離相等;④點O在∠A的平分線上.其中結論正確的個數是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°.以AB長為一邊作△ABD,且AD=BD,∠ADB=90°,取AB中點E,連DE、CE、CD.則∠EDC= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩地相距900千米,一列快車從甲地出發(fā)勻速開往乙地,速度為120千米/時;快車開出30分鐘時,一列慢車從乙地出發(fā)勻速開往甲地,速度為90千米/時.設慢車行駛的時間為x小時,快車到達乙地后停止行駛,根據題意解答下列問題:
(1)當快車與慢車相遇時,求慢車行駛的時間;
(2)請從下列(A),(B)兩題中任選一題作答.
我選擇: .
(A)當兩車之間的距離為315千米時,求快車所行的路程;
(B)①在慢車從乙地開往甲地的過程中,求快慢兩車之間的距離;(用含x的代數式表示)
②若第二列快車也從甲地出發(fā)勻速駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇后30分鐘時,第二列快車與慢車相遇,直接寫出第二列快車比第一列快車晚出發(fā)多少小時.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com