【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 3 | 0 | -1 | 0 | m | 8 | … |
(1)可求得m的值為________;
(2)在坐標(biāo)系畫出該函數(shù)的圖象;
(3)當(dāng)y≥0時,x的取值范圍為_____________
【答案】(1)3;(2)見解析;(3)或
【解析】
(1)根據(jù)表格中的數(shù)據(jù)和二次函數(shù)的性質(zhì)可以求得m的值;
(2)根據(jù)表格中的數(shù)據(jù)可以畫出相應(yīng)的函數(shù)圖象;
(3)根據(jù)函數(shù)圖象可以直接寫出當(dāng)y≥0時,x的取值范圍.
(1)由表格可知,該函數(shù)的對稱軸為直線x=2,
∴x=4和x=0時對應(yīng)的函數(shù)值相等,
∴m=3,
故答案為:3;
(2)由表格中的數(shù)據(jù),可以畫出該函數(shù)的圖象如右圖所示;
(3)由圖象可得,
當(dāng)y≥0時,x的取值范圍為x≤1或x≥3,
故答案為:x≤1或x≥3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).
(1)畫出△ABC;
(2)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1點的坐標(biāo): ;
(3)以O為位似中心,在第一象限內(nèi)把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(5,4),B(0,3),C(2,1).
(1)畫出△ABC關(guān)于原點成中心對稱的△A1B1C1,并寫出點C1的坐標(biāo);
(2)畫出將A1B1C1繞點C1按順時針旋轉(zhuǎn)90°所得的△A2B2C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正方形紙片ABCD沿EF折疊(點E,F分別在邊AB,CD上),使點B落在AD邊上的點M處(點M不與A,D重),點C落在點N處,MN與CD交于點P, 連接MB,當(dāng)點M在邊AD上移動時.有下列結(jié)論:①BM=EF;②0<PF<3 ;③∠AMB=∠BMP;④△PDM的周長隨之改變.其中正確結(jié)論的序號是_______.(把你認為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(1,0).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育看臺側(cè)面的示意圖如圖所示,觀眾區(qū)AC的坡度i為1:2,頂端C離水平地面AB的高度為10m,從頂棚的D處看E處的仰角α=18°30′,豎直的立桿上C、D兩點間的距離為4m,E處到觀眾區(qū)底端A處的水平距離AF為3m.
求:(1)觀眾區(qū)的水平寬度AB;
(2)頂棚的E處離地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,,交線段于點.
(1)如圖1,當(dāng)時,求證:;
(2)當(dāng)時.
①如圖2,猜想線段、之間的數(shù)量關(guān)系,并證明你的猜想;
②如圖3,點時邊的中點,連接,與交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com