【題目】已知一件文化衫價(jià)格為18元,一個(gè)書包的價(jià)格比一件文化衫價(jià)格的2倍還少6元.

(1)求一個(gè)書包的價(jià)格是多少元?

(2)某公司出資1 800元,拿出不少于350元但不超過400元的經(jīng)費(fèi)獎(jiǎng)勵(lì)山區(qū)小學(xué)的優(yōu)秀學(xué)生,剩余經(jīng)費(fèi)還能為多少名山區(qū)小學(xué)的學(xué)生每人購買一個(gè)書包和一件文化衫?

【答案】(1)30元;(2)30名

【解析】試題分析:(1)書包的價(jià)格=文化衫×2﹣6,據(jù)此列式即可求解.

2)不等關(guān)系為

350≤1800元﹣每人購買一個(gè)書包和一件文化衫的價(jià)錢≤400,列不等式組,求解取正整數(shù)值即可.

試題解析:解:118×2﹣6=30(元),所以一個(gè)書包的價(jià)格是30元.

2設(shè)還能為x名學(xué)生每人購買一個(gè)書包和一件文化衫,根據(jù)題意得

350≤1 800(1830)x≤400

解得

x為正整數(shù),x=30

答:剩余經(jīng)費(fèi)還能為30名學(xué)生每人購買一個(gè)書包和一件文化衫.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,DE∥BC交AC于點(diǎn)E,交AB于點(diǎn)D,DE=BC
求證:D、E分別是AB、AC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x﹣5經(jīng)過點(diǎn)A(a,1﹣a),則A點(diǎn)落在第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點(diǎn)與原點(diǎn)的距離;即;這個(gè)結(jié)論可以推廣為表示在數(shù)軸上數(shù), 對應(yīng)點(diǎn)之間的距離.絕對值的幾何意義在解題中有著廣泛的應(yīng)用

例1:解方程

容易得出,在數(shù)軸上與原點(diǎn)距離為4的點(diǎn)對應(yīng)的數(shù)為±4,即該方程的±4

2:解方程

由絕對值的幾何意義可知,該方程表示求在數(shù)軸上與-12的距離之和為5的點(diǎn)對應(yīng)的的值.在數(shù)軸上,-12的距離為3,滿足方程的對應(yīng)的點(diǎn)在2的右邊或在-1的左邊.若對應(yīng)的

點(diǎn)在2的右邊,如圖可以看出;同理,若對應(yīng)點(diǎn)在-1的左邊,可得所以原方程的解是

3:解不等式

在數(shù)軸上找出的解,即到1的距離為3的點(diǎn)對應(yīng)的數(shù)為-24,如圖,在-2的左邊或在4的右邊的值就滿足,所以的解為

參考閱讀材料,解答下列問題:

(1)方程的解為   ;

(2)方程的解為  ;

3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式8x2﹣3x+5與多項(xiàng)式3x3+2mx2﹣5x+7相加后,不含二次項(xiàng),則常數(shù)m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:2ab+3a2b﹣2(a2b﹣ab),其中a=﹣1,b=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)從M地到N地有一條普通公路,總路程為120km;有一條高速公路,總路程為126km.甲車和乙車同時(shí)從M地開往N地,甲車全程走普通公路,乙車先行駛了另一段普通公路,然后再上高速公路.假設(shè)兩車在普通公路和高速公路上分別保持勻速行駛,其中在普通公路上的行車速度為60km/h,在高速公路上的行車速度為100km/h.設(shè)兩車出發(fā)x h時(shí),距N地的路程為y km,圖中的線段AB與折線ACD分別表示甲車與乙車的yx之間的函數(shù)關(guān)系.

(1)填空:a ,b

(2)求線段AB、CD所表示的yx之間的函數(shù)關(guān)系式;

(3)兩車在何時(shí)間段內(nèi)離N地的路程之差達(dá)到或超過30km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種巧克力的質(zhì)量標(biāo)識為“24±0.25”g,則下列巧克力中不合格的是(
A.23.95
B.24.05
C.24.25
D.24.35

查看答案和解析>>

同步練習(xí)冊答案