【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為_____.
【答案】.
【解析】
過P作PF∥BC交AC于F,得出等邊三角形APF,推出AP=PF=QC,根據(jù)等腰三角形性質(zhì)求出EF=AE,證△PFD≌△QCD,推出FD=CD,推出DEAC即可.
過P作PF∥BC交AC于F,
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,
∴△APF是等邊三角形,
∴AP=PF=AF.
∵PE⊥AC,
∴AE=EF.
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD和△QCD中,
∵,
∴△PFD≌△QCD(AAS),
∴FD=CD.
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DEAC.
∵AC=3,
∴DE.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一動點E自A向B以2cm/s的速度運動,動點F自B向C以4cm/s的速度運動,若E、F同時分別從A、B出發(fā).
(1)試問出發(fā)幾秒后,△BEF為等邊三角形?
(2)填空:出發(fā) 秒后,△BEF為直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在四邊形中,,點是的中點,若是的平分線,試判斷,,之間的等量關系.
解決此問題可以用如下方法:延長交的延長線于點,易證得到,從而把,,轉化在一個三角形中即可判斷.
,,之間的等量關系________;
(2)問題探究:如圖②,在四邊形中,,與的延長線交于點,點是的中點,若是的平分線,試探究,,之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=50°,∠B=∠C,點D,E,F分別在邊BC,CA,AB上,且滿足BF=CD,BD=CE,∠BFD=30°,則∠FDE的度數(shù)為( )
A.75°B.80°C.65°D.95°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是( 。
A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,AD=5,求OC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖等邊△ABC,D是AC的中點,E在BC的延長線上,且CE=CD,過D作DF⊥BE于點E.
(Ⅰ)求證:△BDE為等腰三角形;
(Ⅱ)請猜想FC與BF間的數(shù)量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com