【題目】如圖,在△ADB△ADC中,下列條件:①BDDC,ABAC;②∠B∠C,∠BAD∠CAD;③∠B∠C,BDDC;④∠ADB∠ADC,BDDC.能得出△ADB≌△ADC的序號(hào)是

【答案】①②④

【解析】試題分析:△ADB△ADC中,AD=AD,若添加條件BD=DC,AB=AC,根據(jù)全等三角形的判定定理SSS可以證得△ADB≌△ADC;△ADB△ADC中,AD=AD,若添加條件∠B=∠C,∠BAD=∠CAD,根據(jù)全等三角形的判定定理AAS可以證得△ADB≌△ADC;△ADB△ADC中,AD=AD,若添加條件∠B=∠CBD=DC,由SSA不可以證得△ADB≌△ADC;△ADB△ADC中,AD=AD,若添加條件∠ADB=∠ADC,BD=DC,根據(jù)全等三角形的判定定理SAS可以證得△ADB≌△ADC;綜上所述,符合題意的序號(hào)是①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAC的中點(diǎn),B是線段AC上任意一點(diǎn),MAB的中點(diǎn),NBC的中點(diǎn),那么下列四個(gè)等式中,不成立的是(

A.MN=OCB.MO=(AC-AB)

C.ON=(AC - CB)D.MN=(AC+OB)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件中:①,②,③,④中,能確定是直角三角形的條件有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABD∠BDC的平分線交于點(diǎn)EBE的延長(zhǎng)線交CD于點(diǎn)F,且∠1+∠2=90°.猜想∠2∠3的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車在公路上行駛,其所走的路程和所用的時(shí)間可用下表表示:

時(shí)間t(min)

1

2.5

5

10

20

50

路程s(km)

2

5

10

20

40

100

(1)在這個(gè)變化過(guò)程中,自變量、因變量各是什么?

(2)當(dāng)汽車行駛的路程為20 km時(shí),所花的時(shí)間是多少分鐘?

(3)隨著t逐漸變大,s的變化趨勢(shì)是什么?

(4)路程s與時(shí)間t之間的函數(shù)表達(dá)式為______________

(5)按照這一行駛規(guī)律,當(dāng)所花的時(shí)間t300 min時(shí),汽車行駛的路程s是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC、BD相交于點(diǎn)O,ADBCAEBD于點(diǎn)E,CFBD于點(diǎn)F,BEDF.求證:

1ADE≌△CBF;

2OAOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在離水面高度AC為2米的岸上有人用繩子拉船靠岸,開(kāi)始時(shí)繩子與水面的夾角為30°,此人以每秒05米的速度收繩子

問(wèn):1未開(kāi)始收繩子的時(shí)候,圖中繩子BC的長(zhǎng)度是多少米?

2收繩2秒后船離岸邊多少米?結(jié)果保留根號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過(guò)點(diǎn)D的折痕DE,則∠DEC的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線ABCD的交點(diǎn),∠AOE=COF=

①如果∠EOF=,求∠AOD的度數(shù);

②如果∠EOF=,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案